

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, IL 62234

November 10, 2023
Illinois Environmental Protection Agency
DWPC - Permits MC#15
Attn: 35 I.A.C. § 845.650(e) Alternative Source Demonstration Submittal
1021 North Grand Avenue East
P.O. Box 19276
Springfield, IL 62794-9276

Re: Hennepin Power Plant West Ash Pond System; IEPA ID # W1550100002-01-03

Dear Mr. LeCrone:

In accordance with Title 35 of the Illinois Administrative Code (35 I.A.C.) Section (§) 845.650(e), Dynegy Midwest Generation, LLC (DMG) is submitting this Alternative Source Demonstration (ASD) for exceedances observed from the Quarter 2 2023 sampling event at the Hennepin West Ash Pond System, identified by Illinois Environmental Protection Agency (IEPA) ID No. W1550100002-01-03.

This ASD is being submitted within 60 days from the date of determination of an exceedance of a groundwater protection standard (GWPS) for constituents listed in 35 I.A.C. § 845.600. As required by 35 I.A.C. § 845.650 (e)(1), the ASD was placed on the facility's website within 24 hours of submittal to the agency.

One hard copy is provided with this submittal.

Sincerely,

Phil Morris, PE

Senior Director, Environmental

Enclosures

Alternate Source Demonstration, Quarter 2 2023, Bottom Ash Pond Baldwin Power Plant, Baldwin Illinois

6555 SIERRA DRIVE IRVING, TEXAS 75039 o 214-812-4600 VISTRACORP.COM

Prepared for

Dynegy Midwest Generation, LLC

Date

November 10, 2023

Project No.

1940103649-010

35 I.A.C. § 845.650(E): ALTERNATIVE SOURCE DEMONSTRATION WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

IEPA ID: W1550100002-01 AND

W1550100002-03

CERTIFICATIONS

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tla¢hac

Qualified Professional Engineer

062-063091

Illinois

Ramboll Americas Engineering Solutions, Inc.

Date: November 10, 2023

I, Brian G. Hennings, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Brian G. Hennings
Professional Geologist

196-001482 Illinois

Ramboll Americas Engineering Solutions, Inc.

Date: November 10, 2023

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608

https://ramboll.com

CONTENTS

1.	Introduction	3
2.	Background	4
2.1	Site Location and Description	4
2.2	Groundwater Monitoring	4
2.3	Site History	4
2.4	Site Hydrogeology and Stratigraphy	5
3.	Alternative Source Demonstration: Lines of Evidence	7
3.1	LOE #1: Concentrations of Cadmium in WAPS Porewater Samples	
	are Lower Than Those Observed in Well 22	7
3.2	LOE #2: Cadmium Concentrations in Groundwater are Inversely	
	Correlated with Concentrations of CCR Indicator Parameters	8
3.3	LOE #3: An Aquifer Solids and Geochemical Evaluation Identified	
	Naturally Occurring Cadmium Associated with the Subsurface	
	Alluvium as a Source of Cadmium in the Uppermost Aquifer that	
	can be Mobilized Under Declining pH Conditions Observed at the	
	WAPS	9
4.	Conclusions	10
5.	References	11

TABLES (IN TEXT)

Table A Operational History of the West Ash Pond System

FIGURES (IN TEXT)

Figure A Scatter Plot of Cadmium Versus Boron and Sulfate Concentrations at Monitoring Well 22

FIGURES (ATTACHED)

- Figure 1 Monitoring Well Location Map
- Figure 2 Potentiometric Surface Map May 30, 2023
- Figure 3 Porewater Sample Location Map

APPENDICES

Appendix A	Groundwater Elevation Contour Maps
Appendix B	Porewater Analytical Data, Boring Logs, and Well Construction Information
Appendix C	Supporting Groundwater Analytical Data
Appendix D	Technical Memorandum - Evaluation of Cadmium Sources within Aquifer Solids,

Hennepin Power Plant - West Ash Pond System (Geosyntec Consultants, Inc., 2023)

ACRONYMS AND ABBREVIATIONS

35 I.A.C. Title 35 of the Illinois Administrative Code

AP2/AP4 Ash Pond No. 2/ Ash Pond No. 4
ASD Alternative Source Demonstration

CCR coal combustion residuals

Closure Plan Closure and Post-Closure Care Plan
CMA Corrective Measures Assessment
DMG Dynegy Midwest Generation, LLC

E001 Event 1

EPRI Electric Power Research Institute
Geosyntec Geosyntec Consultants, Inc.
GWPS Groundwater Protection Standard

Hennepin East includes Landfill, AP2, AP4, and East Ash Pond

HPP Hennepin Power Plant

IEPA Illinois Environmental Protection Agency

LOE(s) line(s) of evidence mg/L milligrams per liter

NAVD88 North American Vertical Datum of 1988

No. Number

NRT/OBG Natural Resource Technology, an OBG Company

OWAP Old West Ash Pond (Pond Number No. 1 and Pond No. 3)

OWPP Old West Polishing Pond

Ramboll Ramboll Americas Engineering Solutions, Inc.

RL reporting limit
UA Uppermost Aquifer

USEPA United States Environmental Protection Agency

WAPS West Ash Pond System CCR multi-unit, includes OWAP and OWPP

1. INTRODUCTION

Under Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.650(e), within 60 days from the date of determination of an exceedance of a groundwater protection standard (GWPS) for constituents listed in 35 I.A.C. § 845.600, an owner or operator of a coal combustion residuals (CCR) surface impoundment may complete a written demonstration that a source other than the CCR surface impoundment caused the contamination and the CCR surface impoundment did not contribute to the contamination, or that the exceedance of the GWPS resulted from error in sampling, analysis, statistical evaluation, natural variation in groundwater quality, or a change in the potentiometric surface and groundwater flow direction (Alternative Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Midwest Generation, LLC (DMG), by Ramboll Americas Engineering Solutions, Inc. (Ramboll) to provide pertinent information pursuant to 35 I.A.C. § 845.650(e) for the West Ash Pond System (WAPS), located at Hennepin Power Plant (HPP) near Hennepin, Illinois. The WAPS is comprised of two units: the Old West Ash Pond (Pond Number [No.] 1 and Pond No. 3) (OWAP) and Old West Polishing Pond (OWPP).

The most recent quarterly sampling event (Event 1 [E001]) was completed on June 1, 2023, and analytical data were received on July 13, 2023. In accordance with 35 I.A.C. § 845.610(b)(3)(C), comparison of statistically derived values with the GWPSs described in 35 I.A.C. § 845.600 to determine exceedances of the GWPS was completed by September 11, 2023, within 60 days of receipt of the analytical data (Ramboll, 2023a). The statistical determination identified the following GWPS exceedances at compliance groundwater monitoring wells:

- Arsenic at wells 21R and 51
- Boron at wells 21R, 22, 23, and 35
- Cadmium at well 22
- Sulfate at wells 23 and 35

Pursuant to 35 I.A.C. § 845.650(e), the lines of evidence (LOEs) presented in **Section 3** demonstrate that sources other than the WAPS were the cause of the cadmium GWPS exceedance listed above and the WAPS has not contributed to the exceedances. Cadmium is demonstrated to be naturally occurring in aquifer solids and mobilized to groundwater by declining pH conditions. This ASD was completed by November 10, 2023, within 60 days of determination of the exceedances (September 11, 2023), as required by 35 I.A.C. § 845.650(e). This ASD has been completed in conformance with guidance provided in the Electric Power Research Institute (EPRI) guidance for development of ASDs at CCR sites (EPRI, 2017), and the United States Environmental Protection Agency (USEPA)'s Solid Waste Disposal Facility Criteria: Technical Manual (USEPA, 1993).

Arsenic, boron, and sulfate GWPS exceedances at the WAPS will be addressed in accordance with 35 I.A.C. § 845.660.

2. BACKGROUND

2.1 Site Location and Description

The HPP is located in the northwest quarter of Section 26, Township 33 North, Range 2 West, Putnam County, Illinois and approximately 3 miles north-northeast of the Village of Hennepin.

The WAPS is one of three CCR units at the HPP regulated under 35 I.A.C. § 845. The other two CCR units regulated under 35 I.A.C. § 845 (Ash Pond No. 2 and No. 4 multi-unit [AP2/AP4] and the East Ash Pond) are located adjacent to each other and the Landfill, east of the HPP, and are collectively known as Hennepin East. The WAPS is located west of the HPP. Areas surrounding the WAPS include agricultural land with scattered groupings or rows of trees to the southeast and low-lying floodplains of the Donnelley Wildlife Management Area to the southwest and west. The WAPS and surrounding properties are shown on **Figure 1**.

2.2 Groundwater Monitoring

The WAPS groundwater monitoring system consists of two background monitoring wells (32 and 34) and nine compliance monitoring wells (21R, 22, 22D, 23, 27, 35, 49, 50, and 51) (Ramboll, 2021). A map showing the groundwater monitoring system, including the CCR unit and monitoring wells, is presented in **Figure 1**.

Groundwater samples are collected and analyzed in accordance with the Multi-Site Sampling and Analysis Plan (Ramboll, 2023b). Statistical evaluation of analytical data is performed in accordance with Multi-Site Statistical Analysis Plan (Ramboll, 2022).

2.3 Site History

The HPP has two coal-fired generating units constructed in 1953 and 1959 with a total capacity of 210 Megawatts. Operations ceased in November 2019.

DMG operated the WAPS from 1952 through 1996. It consists of two closed units, the OWAP and the OWPP (**Figure 1**). The OWAP consists of the 9.3-acre Pond No. 1 at the eastern end of the impoundment and the 16.4-acre Pond No. 3 within the central portion of the impoundment. The 4.7-acre OWPP is situated at the western end of the impoundment. All ponds were previously bermed to approximately 15 feet above grade using locally occurring sandy soils. A portion of the OWPP berm was removed after CCR material was removed during closure of this unit in 2020.

During operation, service water was used to sluice fly ash, bottom ash, and low-volume wastes to the WAPS. At the time it was removed from service in late 1996, there was no surface water discharge. Coal ash sluiced to the WAPS was a by-product of the combustion of high-sulfur Illinois coal. The operational history of the WAPS is summarized in **Table A** on the following page.¹

¹ A more detailed description of the operational history can be found in the Hydrogeologic Site Characterization Report, submitted as part of the Closure Plan (NRT/OBG, 2017).

Table A. Operational History of the West Ash Pond System

Date	Event
1952-1955	Construction of OWAP, Pond No. 1. Berms were constructed from locally sandy materials to an original elevation (since modified) of 457 feet NAVD88.
1968	Construction of OWAP, Pond No. 3. Berms were constructed to an original elevation (since modified) of 457 feet NAVD88.
1979	Berms surrounding the OWAP Ponds No. 1 and No. 3 were raised by three feet to an elevation of 460 feet NAVD88.
1988-1989	Ponds No. 1 and No. 3 within the OWAP were consolidated and divided into primary and secondary cells, and the berm around the primary portion was raised five feet to an elevation of 465 feet NAVD88. It was after this consolidation that surface water discharge from the impoundment ceased.
1996	OWAP Ponds No. 1 and No. 3 were removed from service.
2020	OWAP Ponds No. 1 and No. 3 were closed in place and OWPP was closed by removal (CCR consolidated into Ponds No. 1 and No. 3) in accordance with the IEPA-approved closure plan.

IEPA = Illinois Environmental Protection Agency NAVD88 = North American Vertical Datum of 1988

The Closure and Post-Closure Care Plan, Old West Ash Pond, Old West Polishing Pond at DMG, Hennepin Power Station (Closure Plan) was submitted to IEPA in 2017 (Geosyntec Consultants, Inc. [Geosyntec], 2017). The Closure Plan was approved by IEPA in a letter dated June 19, 2018. The approved Closure Plan summarized the planned closure of the WAPS, which included dewatering the CCR, if needed, mechanical excavation of material from the OWPP for use as structural fill in the WAPS, grading within the WAPS, constructing an alternative cover system consisting of geomembrane and vegetated cover soils in direct contract with the graded CCR, and establishment of a vegetative cover. Closure construction was completed on November 17, 2020.

2.4 Site Hydrogeology and Stratigraphy

While information pertinent to this ASD is included in this report, a detailed hydrogeological assessment of the site hydrogeology and stratigraphy was completed and included in the October 25, 2021 operating permit application (Burns & McDonnell, 2021) and the Hydrogeologic Site Characterization Report, submitted as part of the Closure Plan (NRT/OBG, 2017). Those materials are incorporated herein.

There are three dominant geomorphic features in the immediate vicinity of the HPP: an upper river terrace at an elevation of about 500 to 550 feet NAVD88, a lower river terrace at an elevation of about 450 to 460 feet NAVD88, and the current river valley filled with alluvium to an elevation of about 445 feet NAVD88. The HPP and the eastern portion of the WAPS (OWAP Pond No. 1) are on the lower terrace. The western portion of the WAPS (OWAP Pond No. 3 and OWPP) overlies alluvium.

The hydrogeological assessment identified that the stratigraphy within and immediately surrounding the WAPS consists of fill, unlithified river alluvium, and Pleistocene-age glacial outwash deposits overlying Pennsylvanian-age shale bedrock. The perimeter berms of the WAPS contain variable amounts of CCR and re-worked native silt, clay, and sand. Where undisturbed or

partially excavated, the native surficial soil at the site is poorly drained, moderately permeable silty clay loam formed as alluvium in floodplains.

There are two hydrogeologic units present at the HPP: alluvium and Henry Formation sands and gravels. The river laid deposits are identified as Cahokia Alluvium. The Henry Formation sands and gravels make up the upper and lower terraces and fill the valley beneath the alluvium. The Henry Formation and alluvium together comprise the Uppermost Aquifer (UA) at the WAPS and extend from the water table to the bedrock.

The WAPS overlies both glacial deposits (Henry Formation) and alluvium (Cahokia Alluvium). The WAPS, specifically OWAP Pond No. 1, rests on top of lower terrace glacial deposits, and the eastern portion of Pond No. 3 overlies alluvial sand. The western portion of Pond No. 3 and the OWPP overlie silty clay alluvial channel fill deposits.

The Pennsylvanian-age bedrock consists of interbedded layers of shale with thin limestone, sandstone, and coal beds. The shale bedrock unit has low hydraulic conductivity and defines the lower boundary of the UA.

The direction of groundwater flow and hydraulic gradient within the UA varies with the elevation of the Illinois River (select groundwater elevation contour maps are provided in **Appendix A**). During normal river stage the direction of groundwater flow is most often toward the river, but comparison of groundwater and river elevation data indicate reversals in this flow direction during times of high river elevations. The relative duration of these events is short, which leads to the determination of a predominant groundwater flow direction toward the river.

Groundwater elevations for the WAPS during the E001 sampling event on May 30, 2023 are shown in **Figure 2** and ranged from 440.90 feet NAVD88 (in well 34) to 446.70 feet NAVD88 (in wells 26 and 36). The groundwater flow direction was northwest toward the river at this time.

3. ALTERNATIVE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 35 I.A.C. § 845.650(e), this ASD demonstrates that sources other than the WAPS (the CCR unit) caused the cadmium exceedance at well 22 and did not contribute to the contamination. LOEs supporting this ASD include the following:

- 1. Concentrations of cadmium in WAPS porewater samples are lower than those observed in well 22.
- 2. Cadmium concentrations in groundwater are inversely correlated with concentrations of CCR indicator parameters.
- 3. An aquifer solids and geochemical evaluation identified naturally occurring cadmium associated with the subsurface alluvium as a source of cadmium in the Uppermost Aquifer that can be mobilized under declining pH conditions observed at the WAPS.

Data and information supporting these LOEs are discussed in more detail below.

3.1 LOE #1: Concentrations of Cadmium in WAPS Porewater Samples are Lower Than Those Observed in Well 22

Porewater samples were collected from multiple locations shown on **Figure 3** within the WAPS in April and September of 2017 (**Appendix B**). As presented above, closure construction of the WAPS was completed on November 17, 2020 and hydrogeologic characterization of the WAPS was completed prior to closure as documented in the operating permit application and the Hydrogeologic Site Characterization Report, submitted as part of the Closure Plan (NRT/OBG, 2017). Porewater wells L4, LPZ1, LPZ3, and LPZ17 are distributed across the WAPS from east to west (**Figure 3**) and each of the wells were screened at the base of CCR material (see boring logs and well construction information provided in **Appendix B**). More recent data from these wells is not available². CCR porewater most accurately represents the mobile constituents associated with the waste management activity within the CCR SI (EPRI, 2017). The spatial distribution of the wells and screen intervals at the base of the observed CCR material in 2017 provide sample results that are representative of porewater at the WAPS.

Analytical results from locations L4, LPZ1, LPZ3, and LPZ17, sampled on April 25, 2017, indicate that total cadmium concentrations in porewater within the WAPS were less than laboratory reporting limits (RL) (less than 0.001 milligrams per liter [mg/L]). Analytical results of porewater within the WAPS locations L4 and LPZ17, sampled on September 6, 2017, indicate that the total cadmium concentration in the sample from L4 was below the RL (less than 0.001 mg/L) and the total cadmium concentration in the sample from LPZ17 was 0.0013 mg/L. Samples were not collected from LPZ1 and LPZ3 on September 6, 2017 due to these porewater wells being dry.

The cadmium concentrations detected in the porewater samples collected within the WAPS are less than the lower confidence limit of cadmium concentrations observed in well 22 (0.00614 mg/L) therefore the WAPS cannot be the source of the concentrations observed in well 22.

² During closure construction three porewater locations were modified to extend up through the final cover system (LPZ1, LPZ3, and LPZ5). Water level measurements collected from these three wells are similar to the total depths of the wells with little variation, indicating the wells are dry and water levels within the WAPS are below the well screens of these porewater wells.

Analytical data used to support the calculation of lower confidence limits are included in **Appendix C**.

3.2 LOE #2: Cadmium Concentrations in Groundwater are Inversely Correlated with Concentrations of CCR Indicator Parameters

Boron and sulfate are common indicators of CCR impacts to groundwater due to their leachability from CCR and mobility in groundwater (Electric Power Research Institute [EPRI], 2012). Porewater from the WAPS is elevated in both boron and sulfate (**Appendix B**), indicating that these parameters are site-specific key indicators for CCR. If an exceedance is identified for a monitored parameter, but concentrations of boron and sulfate are not directly correlated with that parameter, it is unlikely that the CCR unit is the source of the exceedance.

Figure A on the following page provides a scatter plot of cadmium versus boron and sulfate concentrations (collected from 2015 through the E001 sampling event) in monitoring well 22 (the location of the cadmium exceedance), along with the results of a Kendall correlation test for non-parametric data (these data were determined to be not normally distributed). The results of the test at each well are described by the p-value and tau (Kendall correlation coefficient) included in each plot. Typically, a p-value greater than 0.05 is considered to be a statistically insignificant relationship. The range of tau falls between -1 and 1, with a perfect correlation equal to -1 or 1. The closer tau is to 0, the less of a correlation exists in the data.

The results of the correlation analyses indicate that concentrations of cadmium observed at monitoring well 22 are inversely correlated with concentrations of boron and sulfate, common indicators of CCR impacts to groundwater. **Figure A** illustrates the inverse relationship between cadmium concentrations and boron or sulfate concentrations in groundwater at monitoring well 22, where the p-values are less than 0.001 and tau values are negative.

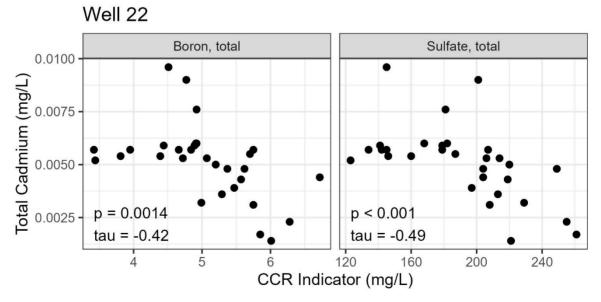


Figure A. Scatter Plot of Cadmium Versus Boron and Sulfate Concentrations at Monitoring Well 22

Cadmium concentrations are inversely correlated with boron and sulfate concentrations in compliance monitoring well 22, indicating the WAPS is not the source of the cadmium exceedance. Analytical data used to support this correlation analysis is included in **Appendix C**.

3.3 LOE #3: An Aquifer Solids and Geochemical Evaluation Identified Naturally Occurring Cadmium Associated with the Subsurface Alluvium as a Source of Cadmium in the Uppermost Aquifer that can be Mobilized Under Declining pH Conditions Observed at the WAPS

Solid phase analyses were completed on samples of UA materials collected from the Site to support the conclusion that cadmium concentrations in groundwater observed in well 22 are associated with naturally occurring cadmium in the UA materials. A review of the geochemical and site conditions to evaluate the influence of the UA solid-phase mineralogy and geochemistry on groundwater composition was completed by Geosyntec and is included as **Appendix D**. The following conclusions were made based on the results of the aquifer solids evaluation and geochemical modeling:

- Solid-phase samples collected from soil borings completed adjacent to background well 34 and compliance well 22 contained cadmium, with the highest total cadmium concentrations observed in samples collected from the screened interval of well 22.
- The majority of cadmium in the solid phase is associated with the weak acid extractable
 fraction (which includes carbonates) and the reducing agent extractable fraction (which
 includes iron/manganese oxides). Carbonate minerals make up approximately 18-25% of
 the solid phase materials and magnetite (an iron oxide mineral) was present in all solid
 phase samples.
- Literature supports two potential mechanisms of cadmium mobilization under declining pH conditions observed at the WAPS: the dissolution of calcite containing coprecipitated cadmium, and the desorption of cadmium from iron oxide mineral surfaces.
- There has been a downward shift in pH in groundwater at well 22 since approximately 2013 with a corresponding increase in cadmium concentrations.
- Thermodynamic reaction pathway modeling supports the conclusion that both mechanisms of cadmium mobilization (dissolution of cadmium-substituted carbonate minerals and desorption from iron oxides) should occur within the range of the observed groundwater pH decrease at well 22.

Evaluation of the solid phase material and geochemical modeling results using site-specific solid-phase data suggest that naturally occurring cadmium associated with the subsurface alluvium comprising the UA at the Site is the alternative source of the cadmium concentrations at well 22 under changing geochemical conditions.

4. CONCLUSIONS

Based on these three LOEs, it has been demonstrated that the WAPS is not the source of and has not contributed to the cadmium exceedance identified in well 22.

- 1. Concentrations of cadmium in WAPS porewater samples are lower than those observed in well 22.
- 2. Cadmium concentrations in groundwater are inversely correlated with concentrations of CCR indicator parameters.
- 3. An aquifer solids and geochemical evaluation identified naturally occurring cadmium associated with the subsurface alluvium as a source of cadmium in the Uppermost Aquifer that can be mobilized under declining pH conditions observed at the WAPS.

Based on the LOEs presented, the following alternative sources are the cause of the exceedance observed in the WAPS compliance well 22:

 Cadmium: exceedance for cadmium is caused by mobilization of naturally occurring cadmium out of aquifer solids due to favorable geochemical conditions.

This information serves as the written ASD report prepared in accordance with 35 I.A.C. § 845.650(e), that the cadmium exceedance observed during the E001 monitoring event was not caused by the WAPS but was from other sources.

5. REFERENCES

Burns & McDonnell, 2021. Initial Operating Permit, Hennepin West Ash Pond System, October 25, 2021.

Electric Power Research Institute (EPRI), 2012. Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate. EPRI, Palo Alto, CA. 1017923.

Electric Power Research Institute (EPRI), 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. EPRI, Palo Alto, CA. 3002010920.

Geosyntec Consultants, Inc. (Geosyntec), 2017. Closure and Post Closure Care Plan, Old West Ash Pond, Old West Polishing Pond at Dynegy Midwest Generation, LLC, Hennepin Power Station.

Geosyntec Consultants, Inc., 2023. Technical Memorandum – Evaluation of Cadmium Sources within Aquifer Solids, Hennepin Power Plant – West Ash Pond System, October 26, 2023.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017. Hydrogeologic Site Characterization Report, West Ash Pond System, Hennepin Power Station, Hennepin, Illinois. December 20, 2017.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021. Groundwater Monitoring Plan Addendum for the West Ash Pond System, Hennepin Power Plant, Hennepin, Illinois. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2022. Multi-Site Statistical Analysis Plan. December 28, 2022.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023a. 35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 2, West Ash Pond System, Hennepin Power Plant, Hennepin, Illinois. September 11, 2023.

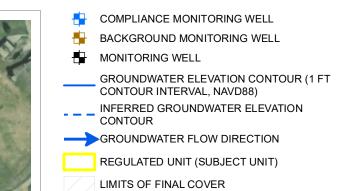
Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023b. Multi-Site Sampling and Analysis Plan, Revision 1. October 10, 2023.

United States Environmental Protection Agency (USEPA), 1993. Solid Waste Disposal Facility Criteria: Technical Manual EPA530-R-93-017. Solid Waste and Emergency Response (5305). November 1993.

FIGURES

COMPLIANCE MONITORING WELL BACKGROUND MONITORING WELL MONITORING WELL 35 I.A.C. § 845 REGULATED UNIT (SUBJECT UNIT) LIMITS OF FINAL COVER SITE FEATURE

MONITORING WELL LOCATION


ALTERNATIVE SOURCE DEMONSTRATION **WEST ASH POND SYSTEM**

HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

FIGURE 1

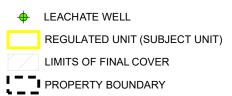
PROPERTY BOUNDARY

NOTES

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)
*ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER PLANT

200 400


POTENTIOMETRIC SURFACE MAP MAY 30, 2023

ALTERNATIVE SOURCE DEMONSTRATION WEST ASH POND SYSTEM

HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

FIGURE 2

0 200 400 L Feet

POREWATER SAMPLE LOCATION MAP

ALTERNATIVE SOURCE DEMONSTRATION WEST ASH POND SYSTEM

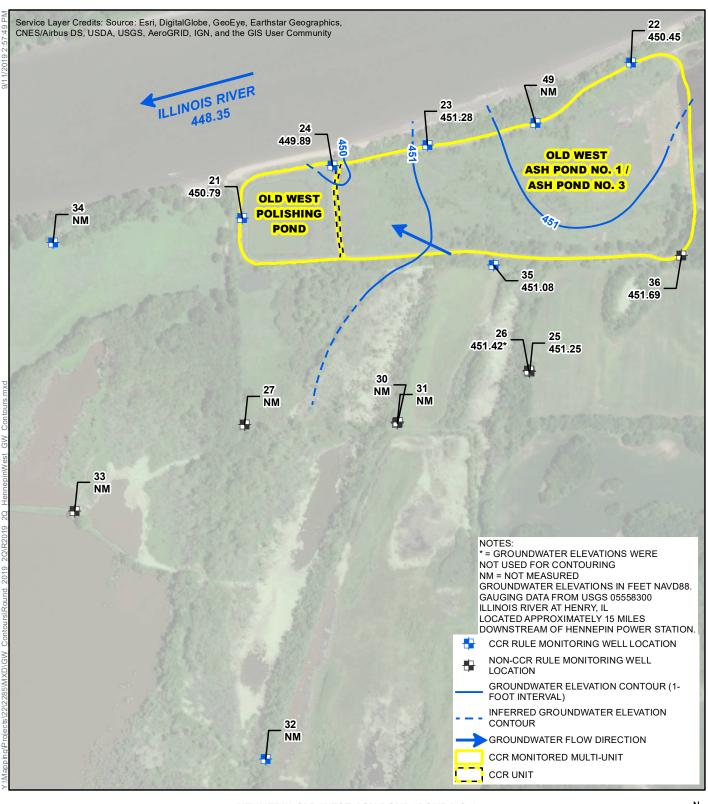
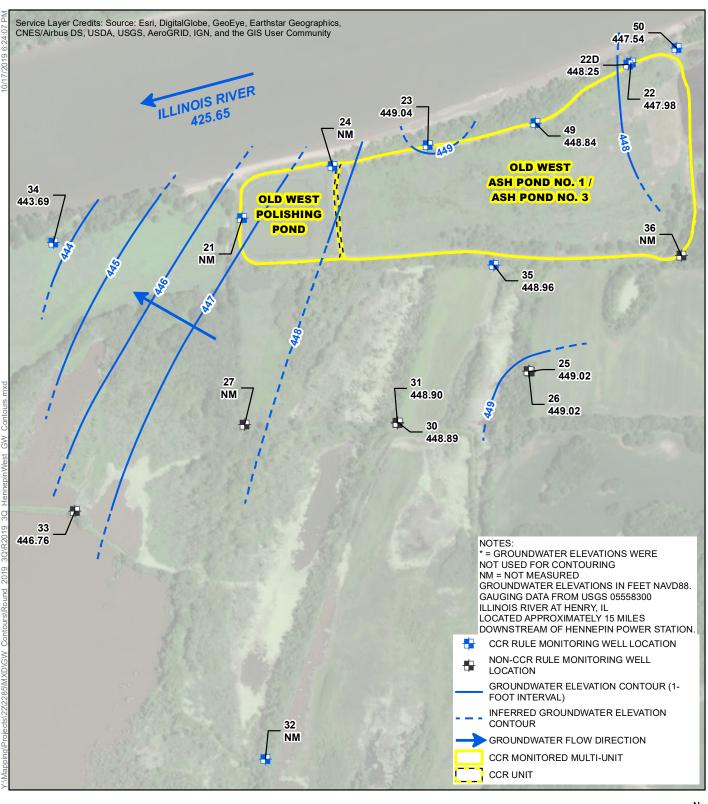

HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

FIGURE 3

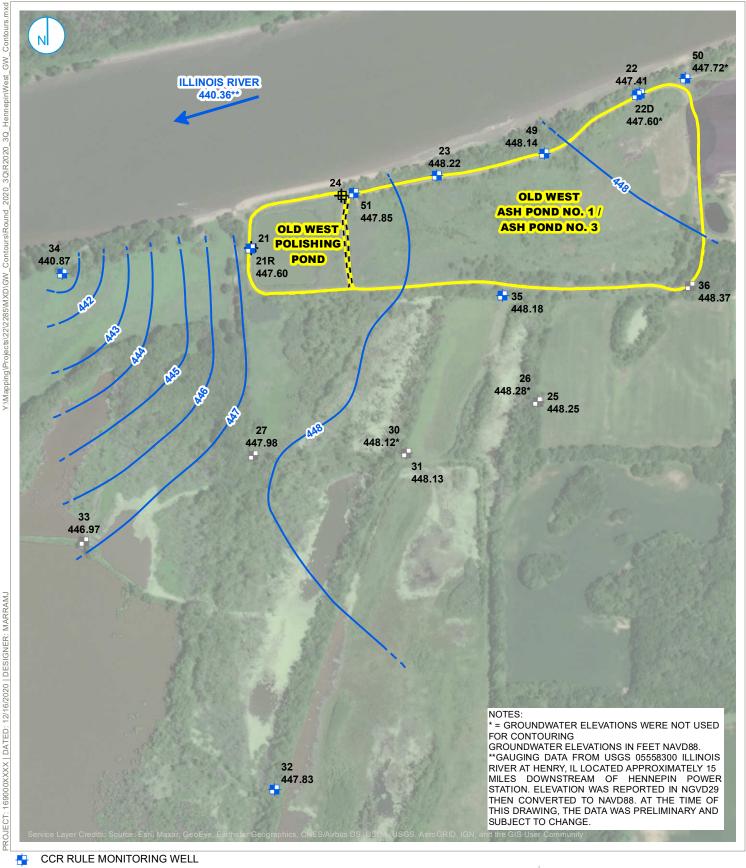
APPENDICES

APPENDIX A GROUNDWATER ELEVATION CONTOUR MAPS



HENNEPIN OLD WEST ASH POND (POND NO.1 AND POND NO.3) AND HENNEPIN OLD WEST POLISHING POND (UNIT ID: 804) GROUNDWATER ELEVATION CONTOUR MAP JUNE 18, 2019

CCR RULE GROUNDWATER MONITORING HENNEPIN POWER STATION HENNEPIN, ILLINOIS



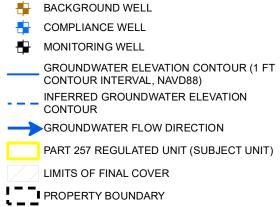
HENNEPIN OLD WEST ASH POND (POND NO.1 AND POND NO. 3) AND HENNEPIN OLD WEST POLISHING POND (UNIT ID: 804) GROUNDWATER ELEVATION CONTOUR MAP SEPTEMBER 17, 2019

CCR RULE GROUNDWATER MONITORING HENNEPIN POWER STATION HENNEPIN, ILLINOIS

NON-CCR RULE MONITORING WELL ABANDONED MONITORING WELL **GROUNDWATER ELEVATION CONTOUR** (1-FT CONTOUR INTERVAL, NAVD88) INFERRED GROUNDWATER ELEVATION CONTOUR **GROUNDWATER FLOW DIRECTION**

CCR MONITORED MULTI-UNIT

COD MONITODED UNIT 250 500


GROUNDWATER ELEVATION CONTOUR MAP SEPTEMBER 2, 2020

HENNEPIN OLD WEST ASH POND (POND NO.1 AND POND NO. 3) AND HENNEPIN OLD WEST **POLISHING POND (UNIT ID: 804)** HENNEPIN POWER STATION HENNEPIN, ILLINOIS

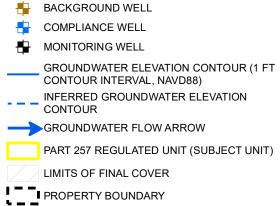
RAMBOLL US CORPORATION A RAMBOLL COMPANY

NOTES

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)
*ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER PLANT


200	400
1	I Fe


GROUNDWATER CONTOUR ELEVATION MAP MARCH 17, 2021

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT OLD WEST ASH POND

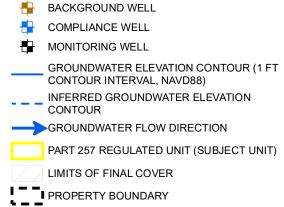
HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

NOTES:

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2.ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) 3.NM - NOT MEASURED

200 400


GROUNDWATER CONTOUR ELEVATION MAP SEPTEMBER 8, 2021

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT OLD WEST ASH POND

HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

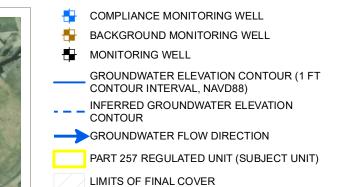
NOTES

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)
*ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER PLANT

200	400
1	l Fe

GROUNDWATER CONTOUR ELEVATION MAP MARCH 21, 2022


ALTERNATE SOURCE DEMONSTRATION OLD WEST ASH POND

HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

FIGURE 2

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER PLANT

200	400
1	I Fee

GROUNDWATER CONTOUR ELEVATION MAP SEPTEMBER 13 AND 14, 2022

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **OLD WEST ASH POND**

> HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

APPENDIX B
POREWATER ANALYTICAL DATA, BORING LOGS,
AND WELL CONSTRUCTION INFORMATION

POREWATER ANALYTICAL DATA

May 08, 2017

Steve Wiskes Natural Resource Technology, Inc. 2422 East Washington Street Suite 104

Bloomington, IL 61704 TEL: (414) 837-3614 FAX: (414) 837-3608

RE: Hennepin Pond 1 & 2 Additional Testing WorkOrder: 17040224

Dear Steve Wiskes:

TEKLAB, INC received 9 samples on 4/27/2017 4:40:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Project Manager

(618)344-1004 ex 16

MAustin@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Sample Summary	18
Dates Report	19
Quality Control Results	23
Receiving Check List	34
Chain of Custody	Appended

Client Project: Hennepin Pond 1 & 2 Additional Testing

Definitions

http://www.teklabinc.com/

Report Date: 08-May-17

Client: Natural Resource Technology, Inc.

Work Order: 17040224

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224 Report Date: 08-May-17

Client Project: Hennepin Pond 1 & 2 Additional Testing

Cooler Receipt Temp: 4.62 °C

An employee of Teklab, Inc. collected the sample(s).

LPZ-5 will not be reported; the well was dry. TM/EAH 4/27/17

LPZ-17 to be used as alternate sampling point for LPZ-5. MLA 5/1/17

Locations and Accreditations

	Collinsville	Springfield	Kansas City	Collinsville Air	
Address	5445 Horseshoe Lake Road	3920 Pintail Dr	8421 Nieman Road	5445 Horseshoe Lake Road	
	Collinsville, IL 62234-7425	Springfield, IL 62711-9415	Lenexa, KS 66214	Collinsville, IL 62234-7425	
Phone	(618) 344-1004	(217) 698-1004	(913) 541-1998	(618) 344-1004	
Fax	(618) 344-1005	(217) 698-1005	(913) 541-1998	(618) 344-1005	
Email	jhriley@teklabinc.com	KKlostermann@teklabinc.com	KNelson@teklabinc.com	EHurley@teklabinc.com	

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2018	Collinsville	
Kansas	KDHE	E-10374	NELAP	4/30/2018	Collinsville	
Louisiana	LDEQ	166493	NELAP	6/30/2017	Collinsville	
Louisiana	LDEQ	166578	NELAP	6/30/2017	Collinsville	
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2017	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2018	Collinsville	
Illinois	IDPH	17584		5/31/2017	Collinsville	
Indiana	ISDH	C-IL-06		1/31/2018	Collinsville	
Kentucky	KDEP	98006		12/31/2017	Collinsville	
Kentucky	UST	0073		1/31/2018	Collinsville	
Missouri	MDNR	00930		5/31/2017	Collinsville	
Missouri	MDNR	930		1/31/2018	Collinsville	
Oklahoma	ODEQ	9978		8/31/2017	Collinsville	

Laboratory Results

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-001 Client Sample ID: L4

Matrix: LEACHATE Collection Date: 04/25/2017 17:22

Matrix. ELACHATE Conection Date: 04/23/2017 17:22								
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to leachate from measuring point		0		11.10	ft	1	04/25/2017 0:00	R232332
STANDARD METHOD 4500-H	B FIELD							
рH		1.00		7.60		1	04/25/2017 17:22	R232332
STANDARD METHODS 2130 I	B FIELD							
Turbidity		1.0		< 1.0	NTU	1	04/25/2017 17:22	R232332
STANDARD METHODS 18TH	ED. 2580 B FIELD							
Oxidation-Reduction Potential		-300		-149	mV	1	04/25/2017 17:22	R232332
STANDARD METHODS 2510 E	FIELD							
Conductivity		1		940	μS/cm	1	04/25/2017 17:22	R232332
STANDARD METHODS 2550 E	3 FIELD							
Temperature		0		19.54	°C	1	04/25/2017 17:22	R232332
STANDARD METHODS 4500-0	G FIELD							
Oxygen, Dissolved		1.00		< 1.00	mg/L	1	04/25/2017 17:22	R232332
STANDARD METHODS 2320 E								
Alkalinity, Carbonate (as CaCO3)	NELAP	0		0	mg/L	1	05/02/2017 16:21	R232320
STANDARD METHODS 2320 E	•							
Alkalinity, Bicarbonate (as CaCO3) NELAP	0		316	mg/L	1	05/02/2017 16:21	R232319
STANDARD METHODS 2540 C	(TOTAL)							
Total Dissolved Solids	NELAP	20		900	mg/L	1	04/28/2017 14:54	R232219
SW-846 9036 (TOTAL)								
Sulfate	NELAP	100		370	mg/L	10	05/02/2017 1:02	R232246
SW-846 9214 (TOTAL)								
Fluoride	NELAP	0.10		0.28	mg/L	1	04/28/2017 16:21	R232156
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		10	mg/L	1	05/02/2017 0:54	R232262
SW-846 3005A, 6010B, METAL	S BY ICP (TOTAL	.)						
Calcium	NELAP	0.050		190	mg/L	1	04/28/2017 18:45	
Magnesium	NELAP	0.050		26.9	mg/L	1	04/28/2017 18:45	
Potassium	NELAP	0.500		9.33	mg/L	5	05/01/2017 18:38	
Sodium	NELAP	0.050		58.4	mg/L	1	04/28/2017 18:45	129686
SW-846 3005A, 6020A, METAL	•	•			/1	_	05/00/0047 40:07	120007
Antimony	NELAP NELAP	1.0		3.0 35.1	μg/L	5 5	05/02/2017 12:07	
Arsenic Barium	NELAP NELAP	1.0 1.0		35.1 50.6	μg/L μg/L	5 5	05/02/2017 12:07 05/02/2017 12:07	
Beryllium	NELAP	1.0		50.6 < 1.0	μg/L μg/L	5 5	05/02/2017 12:07	
Boron	NELAP	25.0		21200	μg/L μg/L	5	05/04/2017 10:28	
Cadmium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 10:20	
Chromium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:07	
Cobalt	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:07	
Lead	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:07	
Lithium		1.0		45.5	μg/L	5	05/02/2017 12:07	129687
Molybdenum	NELAP	1.0		77.9	μg/L	5	05/02/2017 12:07	129687
Selenium	NELAP	1.0		1.4	μg/L	5	05/02/2017 12:07	
Thallium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:07	129687

Laboratory Results

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-001 Client Sample ID: L4

Matrix: LEACHATE Collection Date: 04/25/2017 17:22

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
SW-846 7470A (TOTAL)						
Mercury	NELAP	0.20	< 0.20	μg/L	1	05/01/2017 12:14 129695

Laboratory Results

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-002 Client Sample ID: LPZ-1

Matrix: LEACHATE Collection Date: 04/25/2017 17:34

Matter English									
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
FIELD ELEVATION MEASUR	FIELD ELEVATION MEASUREMENTS								
Depth to leachate from measurin	ng	0		3.94	ft	1	04/25/2017 0:00	R232332	
STANDARD METHOD 4500-H B FIELD									
рН		1.00		9.10		1	04/25/2017 17:34	R232332	
STANDARD METHODS 2130	B FIELD								
Turbidity		1.0		5.6	NTU	1	04/25/2017 17:34	R232332	
STANDARD METHODS 18TH	ED. 2580 B FIELD								
Oxidation-Reduction Potential		-300		-177	mV	1	04/25/2017 17:34	R232332	
STANDARD METHODS 2510	B FIELD								
Conductivity		1		1550	μS/cm	1	04/25/2017 17:34	R232332	
STANDARD METHODS 2550	B FIELD								
Temperature		0		18.67	°C	1	04/25/2017 17:34	R232332	
STANDARD METHODS 4500-	-O G FIELD								
Oxygen, Dissolved		1.00		< 1.00	mg/L	1	04/25/2017 17:34	R232332	
STANDARD METHODS 2320	В								
Alkalinity, Carbonate (as CaCO3) NELAP	0		84	mg/L	1	05/02/2017 16:29	R232320	
STANDARD METHODS 2320	B (TOTAL)								
Alkalinity, Bicarbonate (as CaCC	•	0		0	mg/L	1	05/02/2017 16:29	R232319	
STANDARD METHODS 2540	C (TOTAL)								
Total Dissolved Solids	NELAP	20		1600	mg/L	1	04/28/2017 14:55	R232219	
SW-846 9036 (TOTAL)					-				
Sulfate	NELAP	200		926	mg/L	20	05/03/2017 15:57	R232369	
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.10		< 0.10	mg/L	1	04/28/2017 16:25	R232156	
SW-846 9251 (TOTAL)									
Chloride	NELAP	5		39	mg/L	1	05/02/2017 1:02	R232262	
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)							
Calcium	NELAP	0.050	S	370	mg/L	1	04/28/2017 18:49	129686	
Magnesium	NELAP	0.050		8.46	mg/L	1	04/28/2017 18:49	129686	
Potassium	NELAP	1.00		45.6	mg/L	10	05/01/2017 18:42	129686	
Sodium	NELAP	0.050	S	65.1	mg/L	1	04/28/2017 18:49	129686	
MS QC limits for Ca & Na are not			tio.						
SW-846 3005A, 6020A, META									
Antimony	NELAP	1.0		3.2	μg/L	5	05/02/2017 12:15		
Arsenic	NELAP	1.0		31.1	μg/L	5	05/02/2017 12:15		
Barium	NELAP	1.0		59.6	μg/L	5	05/02/2017 12:15		
Beryllium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:15		
Boron	NELAP	500	S	28300	μg/L	100	05/03/2017 12:18		
Cadmium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:15		
Chromium	NELAP	1.0		2.1	μg/L	5	05/02/2017 12:15		
Cobalt	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:15		
Lead Lithium	NELAP	1.0		1.2	μg/L	5 5	05/02/2017 12:15		
	NELAP	1.0 20.0	S	109 3400	μg/L	5 100	05/02/2017 12:15 05/03/2017 12:18		
Molybdenum Selenium	NELAP	20.0 1.0	3	3400 8.6	μg/L μg/L	5	05/03/2017 12:18		
Thallium	NELAP	1.0		6.6 < 1.0	μg/L μg/L	5 5	05/02/2017 12:15		
- manum	INCLAI	1.0		\ 1. 0	⊬9″ -	J	00/02/2017 12:10	.20001	

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-002 Client Sample ID: LPZ-1

Matrix: LEACHATE Collection Date: 04/25/2017 17:34

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch			
SW-846 3005A, 6020A, ME	SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL)								
MS QC limits for B and Mo are	not applicable due to high sa	mple/spike ratio.							
SW-846 7470A (TOTAL)									
Mercury	NELAP	0.20	< 0.20	μg/L	1	05/01/2017 8:10 129707			

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Matrix: LEACHATE Collection Date: 04/25/2017 18:00

					2400 0 17	-, -		
Analyses	Certification	RL	Qual Res	ult	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to leachate from measuring point	I	0	1	1.02	ft	1	04/25/2017 0:00	R232332
STANDARD METHOD 4500-H	B FIELD							
рН		1.00	•	10.0		1	04/25/2017 18:00	R232332
STANDARD METHODS 2130	B FIELD							
Turbidity		1.0	<	1.0	NTU	1	04/25/2017 18:00	R232332
STANDARD METHODS 18TH I	ED. 2580 B FIELD							
Oxidation-Reduction Potential		-300		-87	mV	1	04/25/2017 18:00	R232332
STANDARD METHODS 2510 E	3 FIELD							
Conductivity		1		688	μS/cm	1	04/25/2017 18:00	R232332
STANDARD METHODS 2550 E	3 FIELD							
Temperature		0	17	7.93	°C	1	04/25/2017 18:00	R232332
STANDARD METHODS 4500-0	O G FIELD							
Oxygen, Dissolved		1.00	< '	1.00	mg/L	1	04/25/2017 18:00	R232332
STANDARD METHODS 2320 E								
Alkalinity, Carbonate (as CaCO3)		0		52	mg/L	1	05/02/2017 16:35	R232320
STANDARD METHODS 2320 E	•							
Alkalinity, Bicarbonate (as CaCO3	,	0		0	mg/L	1	05/02/2017 16:35	R232319
STANDARD METHODS 2540 C	•							
Total Dissolved Solids	NELAP	20		768	mg/L	1	04/28/2017 14:55	R232219
SW-846 9036 (TOTAL)								
Sulfate	NELAP	100		375	mg/L	10	05/02/2017 1:37	R232246
SW-846 9214 (TOTAL)	NELAD	0.40			4	4	0.4/0.0/0.47.40.00	D000450
Fluoride	NELAP	0.10	< ().10	mg/L	1	04/28/2017 16:29	R232156
SW-846 9251 (TOTAL)	NELAD	-		_		4	05/00/0047 4:40	D000000
Chloride	NELAP	5		7	mg/L	1	05/02/2017 1:10	R232262
SW-846 3005A, 6010B, METAL	•	•		04.4	/I	4	04/00/0047 40:00	400000
Calcium	NELAP	0.050		214	mg/L	1	04/28/2017 19:00 04/28/2017 19:00	
Magnesium Potassium	NELAP NELAP	0.050 0.500		956 13.4	mg/L mg/L	1	05/01/2017 19:00	
Sodium	NELAP	0.050		13.4 7.40	mg/L	5 1	04/28/2017 19:00	
SW-846 3005A, 6020A, METAL			<u> </u>	.40	mg/L	<u>'</u>	04/20/2017 15:00	123000
Antimony	NELAP	1.0		4.1	μg/L	5	05/02/2017 12:47	129687
Arsenic	NELAP	1.0	,	12.3	μg/L	5	05/02/2017 12:47	
Barium	NELAP	1.0		25.4	μg/L	5	05/02/2017 12:47	
Beryllium	NELAP	1.0		1.0	μg/L	5	05/02/2017 12:47	
Boron	NELAP	25.0		900	μg/L	5	05/04/2017 10:36	
Cadmium	NELAP	1.0		1.0	μg/L	5	05/02/2017 12:47	
Chromium	NELAP	1.0	;	31.7	μg/L	5	05/02/2017 12:47	129687
Cobalt	NELAP	1.0	<	1.0	μg/L	5	05/02/2017 12:47	129687
Lead	NELAP	1.0		8.9	μg/L	5	05/02/2017 12:47	129687
Lithium		1.0	:	52.0	μg/L	5	05/02/2017 12:47	129687
Molybdenum	NELAP	1.0		264	μg/L	5	05/02/2017 12:47	
Selenium	NELAP	1.0		112	μg/L	5	05/02/2017 12:47	
Thallium	NELAP	1.0	<	1.0	μg/L	5	05/02/2017 12:47	129687

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-003 Client Sample ID: LPZ-3

Matrix: LEACHATE Collection Date: 04/25/2017 18:00

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
SW-846 7470A (TOTAL)						
Mercury	NELAP	0.20	< 0.20	μg/L	1	05/01/2017 8:12 129707

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-005 Client Sample ID: LPZ-13

Matrix: LEACHATE Collection Date: 04/25/2017 13:07

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to leachate from measu point	uring	0		5.59	ft	1	04/25/2017 0:00 R232332

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-006 Client Sample ID: LPZ-15

Matrix: LEACHATE Collection Date: 04/25/2017 13:10

Analyses	Certification	RL (Qual	Result	Units	DF	Date Analyzed Batch
FIELD ELEVATION MEAS	UREMENTS						
Depth to leachate from meas point	uring	0		5.59	ft	1	04/25/2017 0:00 R232332

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-007 Client Sample ID: LPZ-17

Matrix: LEACHATE Collection Date: 04/25/2017 18:44

Matrix: LEACHATE				Conection	1 Date: 04/	25/2017	10:44	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to leachate from measuring point	3	0		13.93	ft	1	04/25/2017 0:00	R232332
STANDARD METHOD 4500-H	B FIELD							
рН		1.00		10.0		1	04/25/2017 18:44	R232332
STANDARD METHODS 2130	B FIELD							
Turbidity		1.0		28	NTU	1	04/25/2017 18:44	R232332
STANDARD METHODS 18TH	ED. 2580 B FIELD							
Oxidation-Reduction Potential		-300		-163	mV	1	04/25/2017 18:44	R232332
STANDARD METHODS 2510 I	B FIELD							
Conductivity		1		1780	μS/cm	1	04/25/2017 18:44	R232332
STANDARD METHODS 2550 I	B FIELD							
Temperature		0		20.48	°C	1	04/25/2017 18:44	R232332
STANDARD METHODS 4500-	O G FIELD							
Oxygen, Dissolved		1.00		< 1.00	mg/L	1	04/25/2017 18:44	R232332
STANDARD METHODS 2320 I	В							
Alkalinity, Carbonate (as CaCO3)	NELAP	0		80	mg/L	1	05/02/2017 16:42	R232320
STANDARD METHODS 2320 I	B (TOTAL)							
Alkalinity, Bicarbonate (as CaCO3	3) NELAP	0		0	mg/L	1	05/02/2017 16:42	R232319
STANDARD METHODS 2540 (C (TOTAL)							
Total Dissolved Solids	NELAP	20		2090	mg/L	1	05/01/2017 13:34	R232278
SW-846 9036 (TOTAL)								
Sulfate	NELAP	500		1270	mg/L	50	05/03/2017 16:24	R232369
SW-846 9214 (TOTAL)								
Fluoride	NELAP	0.10		< 0.10	mg/L	1	05/02/2017 13:17	R232279
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		< 5	mg/L	1	05/02/2017 1:45	R232262
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)						
Calcium	NELAP	0.050	S	578	mg/L	1	05/02/2017 10:20	129737
Magnesium	NELAP	0.050		1.32	mg/L	1	05/02/2017 10:20	129737
Potassium	NELAP	0.500	S	26.5	mg/L	5	05/02/2017 12:51	129737
Sodium	NELAP	0.050		16.1	mg/L	1	05/02/2017 10:20	129737
MS QC limits for K are not applicab	• •	•						
MS QC limits for Ca are not applica								
SW-846 3005A, 6020A, META		-						
Antimony	NELAP	1.0		1.0	μg/L	5	05/02/2017 18:08	
Arsenic	NELAP	1.0		26.5	μg/L	5	05/02/2017 18:08	
Barium	NELAP	1.0		92.0	μg/L	5	05/02/2017 18:08	
Beryllium	NELAP	1.0	c	< 1.0	μg/L	5 5	05/03/2017 14:13	
Boron Cadmium	NELAP NELAP	25.0 1.0	S	26900 < 1.0	μg/L	5 5	05/03/2017 14:13 05/02/2017 18:08	
Chromium	NELAP	1.0		3.8	μg/L μg/L	5	05/03/2017 14:13	
Cobalt	NELAP	1.0		1.2	μg/L μg/L	5	05/03/2017 14:13	
Lead	NELAP	1.0		7.7	μg/L	5	05/02/2017 14:13	
Lithium		1.0		97.5	μg/L	5	05/03/2017 14:13	
Molybdenum	NELAP	1.0		289	μg/L	5	05/02/2017 18:08	
Selenium	NELAP	1.0		118	μg/L	5	05/02/2017 18:08	
		,		-	. 5	-		-

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-007 Client Sample ID: LPZ-17

Matrix: LEACHATE Collection Date: 04/25/2017 18:44

Analys	es Certification	RL Qu	ıal Result	Units	DF	Date Analyzed Batch
SW-846 3005A, 603	20A, METALS BY ICPMS (TOTAL)					
Thallium	NELAP	1.0	< 1.0	μg/L	5	05/02/2017 18:08 129738
MS QC limits for B are	e not applicable due to high sample/spik	e ratio.				
SW-846 7470A (TC	OTAL)					
Mercury	NELAP	0.20	< 0.20	μg/L	1	05/01/2017 14:18 129736

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-008 Client Sample ID: L4 DUP

Matrix: LEACHATE Collection Date: 04/25/2017 17:22

				on Butter of	, -, -		
Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS						
Depth to leachate from measuring point)	0	11.10	ft	1	04/25/2017 0:00	R232332
STANDARD METHOD 4500-H	B FIELD						
рН		1.00	7.60	ı	1	04/25/2017 17:22	R232332
STANDARD METHODS 2130	B FIELD						
Turbidity		1.0	< 1.0	NTU	1	04/25/2017 17:22	R232332
STANDARD METHODS 18TH	ED. 2580 B FIELD						
Oxidation-Reduction Potential		-300	-149	mV	1	04/25/2017 17:22	R232332
STANDARD METHODS 2510 E	3 FIELD						
Conductivity		1	940	μS/cm	1	04/25/2017 17:22	R232332
STANDARD METHODS 2550 E	3 FIELD						
Temperature		0	19.54	°C	1	04/25/2017 17:22	R232332
STANDARD METHODS 4500-0	O G FIELD						
Oxygen, Dissolved		1.00	< 1.00	mg/L	1	04/25/2017 17:22	R232332
STANDARD METHODS 2320 E							
Alkalinity, Carbonate (as CaCO3)	NELAP	0	0	mg/L	1	05/02/2017 16:47	R232320
STANDARD METHODS 2320 E	B (TOTAL)						
Alkalinity, Bicarbonate (as CaCO3	B) NELAP	0	282	mg/L	1	05/02/2017 16:47	R232319
STANDARD METHODS 2540 (C (TOTAL)						
Total Dissolved Solids	NELAP	20	926	mg/L	1	04/28/2017 14:56	R232219
SW-846 9036 (TOTAL)							
Sulfate	NELAP	100	388	mg/L	10	05/02/2017 2:01	R232246
SW-846 9214 (TOTAL)							
Fluoride	NELAP	0.10	0.26	mg/L	1	04/28/2017 16:34	R232156
SW-846 9251 (TOTAL)							
Chloride	NELAP	5	11	mg/L	1	05/02/2017 1:53	R232262
SW-846 3005A, 6010B, METAI	LS BY ICP (TOTAL)					
Calcium	NELAP	0.050	185	· ·	1	04/28/2017 19:03	
Magnesium	NELAP	0.050	27.6	· ·	1	04/28/2017 19:03	
Potassium	NELAP	0.500	9.87	· ·	5	05/01/2017 18:56	
Sodium	NELAP	0.050	48.8	mg/L	1	04/28/2017 19:03	129686
SW-846 3005A, 6020A, METAL	•	•			<u>-</u>	.=!	40000=
Antimony	NELAP	1.0	3.0		5	05/02/2017 12:55	
Arsenic	NELAP	1.0	27.0	. •	5	05/02/2017 12:55 05/02/2017 12:55	
Barium	NELAP	1.0	46.3	. •	5		
Beryllium Boron	NELAP NELAP	1.0 25.0	< 1.0 23900	. •	5 5	05/02/2017 12:55 05/04/2017 10:44	
Cadmium	NELAP	1.0	23900 < 1.0	. •	5	05/02/2017 10:44	
Chromium	NELAP	1.0	< 1.0	. •	5	05/02/2017 12:55	
Cobalt	NELAP	1.0	< 1.0	. •	5	05/02/2017 12:55	
Lead	NELAP	1.0	< 1.0	. •	5	05/02/2017 12:55	
Lithium		1.0	48.9		5	05/02/2017 12:55	
Molybdenum	NELAP	1.0	83.0		5	05/02/2017 12:55	129687
Selenium	NELAP	1.0	1.4		5	05/02/2017 12:55	129687
Thallium	NELAP	1.0	< 1.0	μg/L	5	05/02/2017 12:55	129687

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-008 Client Sample ID: L4 DUP

Matrix: LEACHATE Collection Date: 04/25/2017 17:22

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
SW-846 7470A (TOTAL)						
Mercury	NELAP	0.20	< 0.20	μg/L	1	05/01/2017 8:14 129707

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Lab ID: 17040224-009 Client Sample ID: Field Blank

Matrix: LEACHATE Collection Date: 04/25/2017 19:00

Math. El. (6) / 125 / 2017 15:00								
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 2320) B							
Alkalinity, Carbonate (as CaCO	3) NELAP	0		0	mg/L	1	05/02/2017 16:55	R232320
STANDARD METHODS 2320	B (TOTAL)							
Alkalinity, Bicarbonate (as CaCo	O3) NELAP	0		2	mg/L	1	05/02/2017 16:55	R232319
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		< 20	mg/L	1	04/28/2017 14:56	R232219
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10		< 10	mg/L	1	05/02/2017 2:04	R232246
SW-846 9214 (TOTAL)								
Fluoride	NELAP	0.10		< 0.10	mg/L	1	04/28/2017 16:41	R232156
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		< 5	mg/L	1	05/02/2017 2:02	R232262
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)				-			
Calcium	NELAP	0.050		0.068	mg/L	1	04/28/2017 19:07	129686
Magnesium	NELAP	0.050		< 0.050	mg/L	1	04/28/2017 19:07	129686
Potassium	NELAP	0.100		< 0.100	mg/L	1	04/28/2017 19:07	129686
Sodium	NELAP	0.050		< 0.050	mg/L	1	04/28/2017 19:07	129686
SW-846 3005A, 6020A, META	ALS BY ICPMS (TOTA	AL)						
Antimony	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	129687
Arsenic	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	129687
Barium	NELAP	1.0		1.1	μg/L	5	05/02/2017 13:03	129687
Beryllium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	129687
Boron	NELAP	25.0		< 25.0	μg/L	5	05/03/2017 12:10	129687
Cadmium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	
Chromium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	
Cobalt	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	
Lead	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	
Lithium		1.0		< 1.0	μg/L	5	05/02/2017 13:03	
Molybdenum	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	
Selenium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	
Thallium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 13:03	129687
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.20		< 0.20	μg/L	1	05/01/2017 8:17	129707

Sample Summary

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17040224

Lab Sample ID	Client Sample ID	Matrix	Fractions	Collection Date
17040224-001	L4	Leachate	2	04/25/2017 17:22
17040224-002	LPZ-1	Leachate	2	04/25/2017 17:34
17040224-003	LPZ-3	Leachate	2	04/25/2017 18:00
17040224-004	LPZ-5	Leachate	2	04/25/2017 13:30
17040224-005	LPZ-13	Leachate	1	04/25/2017 13:07
17040224-006	LPZ-15	Leachate	1	04/25/2017 13:10
17040224-007	LPZ-17	Leachate	2	04/25/2017 18:44
17040224-008	L4 DUP	Leachate	2	04/25/2017 17:22
17040224-009	Field Blank	Leachate	2	04/25/2017 19:00

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
17040224-001A	L4	04/25/2017 17:22	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
	Standard Method 4500-H B Field				04/25/2017 17:22
	Standard Methods 2130 B Field				04/25/2017 17:22
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 17:22
	Standard Methods 2320 B				05/02/2017 16:21
	Standard Methods 2320 B (Total)				05/02/2017 16:21
	Standard Methods 2510 B Field				04/25/2017 17:22
	Standard Methods 2540 C (Total)				04/28/2017 14:54
	Standard Methods 2550 B Field				04/25/2017 17:22
	Standard Methods 4500-O G Field				04/25/2017 17:22
	SW-846 9036 (Total)				05/02/2017 1:02
	SW-846 9214 (Total)				04/28/2017 16:21
	SW-846 9251 (Total)				05/02/2017 0:54
17040224-001B	L4	04/25/2017 17:22	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 18:45
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	05/01/2017 18:38
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 12:07
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/04/2017 10:28
	SW-846 7470A (Total)			04/28/2017 11:25	05/01/2017 12:14
7040224-002A	LPZ-1	04/25/2017 17:34	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
	Standard Method 4500-H B Field				04/25/2017 17:34
	Standard Methods 2130 B Field				04/25/2017 17:34
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 17:34
	Standard Methods 2320 B				05/02/2017 16:29
	Standard Methods 2320 B (Total)				05/02/2017 16:29
	Standard Methods 2510 B Field				04/25/2017 17:34
	Standard Methods 2540 C (Total)				04/28/2017 14:55
	Standard Methods 2550 B Field				04/25/2017 17:34
	Standard Methods 4500-O G Field				04/25/2017 17:34
	SW-846 9036 (Total)				05/03/2017 15:57
	SW-846 9214 (Total)				04/28/2017 16:25
	SW-846 9251 (Total)				05/02/2017 1:02
7040224-002B	LPZ-1	04/25/2017 17:34	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 18:49
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	05/01/2017 18:42

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17040224

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 12:15
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/03/2017 12:18
	SW-846 7470A (Total)			04/28/2017 15:10	05/01/2017 8:10
17040224-003A	LPZ-3	04/25/2017 18:00	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
	Standard Method 4500-H B Field				04/25/2017 18:00
	Standard Methods 2130 B Field				04/25/2017 18:00
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 18:00
	Standard Methods 2320 B				05/02/2017 16:35
	Standard Methods 2320 B (Total)				05/02/2017 16:35
	Standard Methods 2510 B Field				04/25/2017 18:00
	Standard Methods 2540 C (Total)				04/28/2017 14:55
	Standard Methods 2550 B Field				04/25/2017 18:00
	Standard Methods 4500-O G Field				04/25/2017 18:00
	SW-846 9036 (Total)				05/02/2017 1:37
	SW-846 9214 (Total)				04/28/2017 16:29
	SW-846 9251 (Total)				05/02/2017 1:10
7040224-003B	LPZ-3	04/25/2017 18:00	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 19:00
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	05/01/2017 18:53
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 12:47
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/04/2017 10:36
	SW-846 7470A (Total)			04/28/2017 15:10	05/01/2017 8:12
17040224-004A	LPZ-5	04/25/2017 13:30	04/27/2017 16:40		
	Standard Methods 2320 B (Total)				05/02/2017 14:13
	Standard Methods 2540 C (Total)				04/28/2017 14:56
17040224-005A	LPZ-13	04/25/2017 13:07	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
17040224-006A	LPZ-15	04/25/2017 13:10	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
17040224-007A	LPZ-17	04/25/2017 18:44	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
	Standard Method 4500-H B Field				04/25/2017 18:44
	Standard Methods 2130 B Field				04/25/2017 18:44
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 18:44
	Standard Methods 2320 B				05/02/2017 16:42
	Standard Methods 2320 B (Total)				05/02/2017 16:42

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	Standard Methods 2510 B Field				04/25/2017 18:44
	Standard Methods 2540 C (Total)				05/01/2017 13:34
	Standard Methods 2550 B Field				04/25/2017 18:44
	Standard Methods 4500-O G Field				04/25/2017 18:44
	SW-846 9036 (Total)				05/03/2017 16:24
	SW-846 9214 (Total)				05/02/2017 13:17
	SW-846 9251 (Total)				05/02/2017 1:45
7040224-007B	LPZ-17	04/25/2017 18:44	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			05/01/2017 11:23	05/02/2017 10:20
	SW-846 3005A, 6010B, Metals by ICP (Total)			05/01/2017 11:23	05/02/2017 12:51
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			05/01/2017 11:25	05/02/2017 18:08
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			05/01/2017 11:25	05/03/2017 14:13
	SW-846 7470A (Total)			05/01/2017 11:03	05/01/2017 14:18
7040224-008A	L4 DUP	04/25/2017 17:22	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
	Standard Method 4500-H B Field				04/25/2017 17:22
	Standard Methods 2130 B Field				04/25/2017 17:22
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 17:22
	Standard Methods 2320 B				05/02/2017 16:47
	Standard Methods 2320 B (Total)				05/02/2017 16:47
	Standard Methods 2510 B Field				04/25/2017 17:22
	Standard Methods 2540 C (Total)				04/28/2017 14:56
	Standard Methods 2550 B Field				04/25/2017 17:22
	Standard Methods 4500-O G Field				04/25/2017 17:22
	SW-846 9036 (Total)				05/02/2017 2:01
	SW-846 9214 (Total)				04/28/2017 16:34
	SW-846 9251 (Total)				05/02/2017 1:53
7040224-008B	L4 DUP	04/25/2017 17:22	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 19:03
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	05/01/2017 18:56
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 12:55
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/04/2017 10:44
	SW-846 7470A (Total)			04/28/2017 15:10	05/01/2017 8:14
7040224-009A	Field Blank	04/25/2017 19:00	04/27/2017 16:40		
	Standard Methods 2320 B				05/02/2017 16:55
	Standard Methods 2320 B (Total)				05/02/2017 16:55
	Standard Methods 2540 C (Total)				04/28/2017 14:56

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9036 (Total)				05/02/2017 2:04
	SW-846 9214 (Total)				04/28/2017 16:41
	SW-846 9251 (Total)				05/02/2017 2:02
17040224-009B	Field Blank	04/25/2017 19:00	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 19:07
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 13:03
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/03/2017 12:10
	SW-846 7470A (Total)			04/28/2017 15:10	05/01/2017 8:17

http://www.teklabinc.com/

Work Order: 17040224 Client: Natural Resource Technology, Inc. Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

STANDARD MET	HOD 4500-H	B FIELD									
Batch R232332	SampType:	LCS		Units							
SampID: LCS-R23	2332										Date
Analyses		I	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
рН			1.00		7.02	7.000	0	100.3	99.1	100.9	04/25/2017
рН			1.00		7.00	7.000	0	100.0	99.1	100.9	04/26/2017
рН			1.00		7.00	7.000	0	100.0	99.1	100.9	04/27/2017
STANDARD MET	HODS 2510 E	3 FIELD									
Batch R232332 SampID: LCS-R23	SampType: 2332	LCS		Units µS/cm							Date
Analyses		F	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Conductivity			1		1420	1409	0	100.6	90	110	04/27/2017
Conductivity			1		1410	1409	0	100.3	90	110	04/25/2017
STANDARD MET	HODS 2510 E	S FIELD									
Batch R232332 SampID: LCS-R23	SampType: 2332	LCS		Units µmhos/o	m						Date
Analyses		I	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Conductivity			10		1410	1412	0	100.1	90	110	04/26/2017
STANDARD MET	HODS 2540 C	(TOTAL	.)								
Batch R232219	SampType:	MBLK		Units mg/L							
SampID: MBLK		_					0DK D () ()	0/ DE0		11: 1 1: 2	Date Analyzed
Analyses		ŀ	RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	
Total Dissolved S			20		< 20						04/28/2017
Total Dissolved S			20		< 20						04/28/2017
Total Dissolved S Total Dissolved S			20		< 20						04/28/2017 04/28/2017
Total Dissolved S			20 20		< 20 < 20						04/28/2017
Total Dissolved C	oolius		20		\ 20						04/20/2017
Batch R232219 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses		F	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved S	Solids		20		1000	1000	0	100.2	90	110	04/28/2017
Batch R232219 SampID: LCSQC	SampType:	LCSQC		Units mg/L							Date
Analyses		F	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved S	Solids		20		986	1000	0	98.6	90	110	04/28/2017
Total Dissolved S	Solids		20		998	1000	0	99.8	90	110	04/28/2017
Total Dissolved S	Solids		20		984	1000	0	98.4	90	110	04/28/2017
	20				304	1000	O	30.4	90	110	04/20/2017

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

	ODS 2540 C	•									
24,,,,,	SampType:	DUP		Units mg/L					RPD	Limit 5	
SampID: 17040224-0	J01ADUP										Date Analyzed
Analyses			RL	Qual		Spike	SPK Ref Val	%REC		/al %RPD	
Total Dissolved Sol	lids		20		908				900.0	0.88	04/28/201
Batch R232278 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Sol	lids		20		< 20						05/01/201
Total Dissolved Sol	lids		20		< 20						05/01/201
Batch R232278 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Sol	lids		20		988	1000	0	98.8	90	110	05/01/201
Batch R232278 SampID: LCSQC	SampType:	LCSQ	3	Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Sol	lids		20	•	972	1000	0	97.2	90 110		05/01/201
Batch R232278	SampType:	DUP		Units mg/L					RPD	Limit 5	
SampID: 17040224-0	007ADUP		DI	Oval	Dagult	Cailea	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Date Analyzed
Analyses Total Dissolved Sol	lids		RL 20	Qual	2110	Spike	Of ICICCI var	70INEO	2094	0.86	05/01/201
SW-846 9036 (TOT	Δ1)										
Batch R232246	SampType:	MBLK		Units mg/L							
SampID: ICB/MBLK											Date
Analyses			RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						05/01/201
Batch R232246 SampID: ICV/LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		19	20.00	0	93.6	90	110	05/01/201
	SampType:	MS		Units mg/L							
SampID: 17040224-0	003AMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			100		469	100.0	375.4	93.2	85	115	05/02/201

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

SW-846 9036 (TOT	IAL)										
Batch R232246	SampType:	MSD		Units mg/L					RPD	Limit 10	
SampID: 17040224-	-003AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Sulfate			100		485	100.0	375.4	109.9	468.7	3.50	05/02/201
Batch R232369 SampID: ICB/MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						05/03/201
Batch R232369 SampID: ICV/LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		20	20.00	0	100.0	90	110	05/03/201
SW-846 9214 (TO	•										
Batch R232156 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10	Çuui	< 0.10	Брис				-	04/28/201
Batch R232156 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10		1.00	1.000	0	100.4	90	110	04/28/201
Batch R232156 SampID: 17040224-	SampType:	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10	•		2.000	0.2570	102.0	85	115	04/28/201
Batch R232156	SampType:	MSD		Units mg/L					RPD	Limit 10	
SampID: 17040224-	-008AMSD										Date
Analyses			RL	Qual			SPK Ref Val			/al %RPD	Analyzed
Fluoride			0.10		2.22	2.000	0.2570	98.0	2.298	3.54	04/28/201
Batch R232279 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10		< 0.10						05/02/201

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

SW-846 9214 (TOT	TAL)										
Batch R232279 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10			1.000	0	97.6	90	110	05/02/2017
Batch R232279 SampID: 17040224-	SampType: 007AMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10		1.89	2.000	0.05300	92.0	85	115	05/02/201
Batch R232279 SampID: 17040224-	SampType: 007AMSD	MSD		Units mg/L					RPD	Limit 10	Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Fluoride			0.10	& any		2.000	0.05300	94.6	1.892	2.76	05/02/201
SW-846 9251 (TOT	TAL)										
Batch R232262	SampType:	MBLK		Units mg/L							
SampID: ICB/MBLK											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		< 5						05/01/2017
Batch R232262 SampID: ICV/LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		20	20.00	0	99.9	90	110	05/01/201
Batch R232262 SampID: 17040224-	SampType: 003AMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5	Çuui		20.00	6.820	92.5	85	115	05/02/201
Batch R232262 SampID: 17040224-	SampType: 003AMSD	MSD		Units mg/L					RPD	Limit 15	Date
Analyses			RL	Qual	Result	Snike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Chloride			5	y um		20.00	6.820	92.8	25.32	0.24	05/02/201
Batch R232398 SampID: ICB/MBLK	SampType:	MBLK		Units mg/L							Date
			DI	Qual	D 1	G . 11 .	SPK Ref Val	0/ DEC	Lovelimit	Lliab Limit	Analyzed
Analyses			RL	Oniai	Recitif	Shike	OF IN INCHIVAL	70KEU	LOW LITTIL	High Limit	,a.,

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

SW-846 9251 (TOTAL)											
Batch R232398	SampType:	LCS		Units mg/L							
SampID: ICV/LCS											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		21	20.00	0	104.6	90	110	05/03/2017

SW-846 3005A, 6010B, METALS BY ICP (TOTAL)												
Batch 129686	SampType:	MBLK	Units mg/L									
SampID: MBLK-12	9686								Date			
Analyses		RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed			
Calcium		0.050		< 0.050 0.05000	0	0	-100	100	04/28/2017			
Calcium		0.0500		< 0.0500 0.05000	0	0	-100	100	04/28/2017			
Magnesium		0.0500		< 0.0500 0.05000	0	0	-100	100	04/28/2017			
Magnesium		0.050		< 0.050 0.05000	0	0	-100	100	04/28/2017			
Potassium		0.100		< 0.100 0.1000	0	0	-100	100	04/28/2017			
Potassium		0.100		< 0.100 0.1000	0	0	-100	100	04/28/2017			
Sodium		0.0500		< 0.0500 0.05000	0	0	-100	100	04/28/2017			
Sodium		0.050		< 0.050 0.05000	0	0	-100	100	04/28/2017			

Batch 129686 Sam	pType: LCS	Units mg/L							
SampID: LCS-129686									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium	0.0500		2.55	2.500	0	102.0	85	115	04/28/2017
Calcium	0.050		2.55	2.500	0	102.0	85	115	04/28/2017
Magnesium	0.0500		2.56	2.500	0	102.4	85	115	04/28/2017
Magnesium	0.050		2.56	2.500	0	102.4	85	115	04/28/2017
Potassium	0.100		2.32	2.500	0	92.6	85	115	04/28/2017
Potassium	0.100		2.32	2.500	0	92.6	85	115	04/28/2017
Sodium	0.050		2.34	2.500	0	93.4	85	115	04/28/2017
Sodium	0.0500		2.34	2.500	0	93.4	85	115	04/28/2017

Batch 129686 SampTyp	e: MS	Units mg/L							
SampID: 17040224-002BMS									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium	0.050	S	368	2.500	370.2	-84.0	75	125	04/28/2017
Magnesium	0.050		10.8	2.500	8.455	93.8	75	125	04/28/2017
Potassium	1.00		47.7	2.500	45.62	84.8	75	125	05/01/2017
Sodium	0.050	S	66.6	2.500	65.09	62.0	75	125	04/28/2017

Batch 129686	SampType:	MSD		Units mg/L					RPD L	imit 20	
SampID: 17040224-	-002BMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	I %RPD	Analyzed
Calcium			0.050	S	374	2.500	370.2	152.0	368.1	1.59	04/28/2017
Magnesium			0.050		11.0	2.500	8.455	102.6	10.80	2.02	04/28/2017
Potassium			1.00		47.6	2.500	45.62	79.2	47.74	0.29	05/01/2017
Sodium			0.050		67.6	2.500	65.09	102.0	66.64	1.49	04/28/2017

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17040224

Batch 129737	SampType:	MBLK		Units mg/L							
SampID: MBLK-1	29737			_							Date Analyzed
Analyses			RL	Qual			SPK Ref Val		Low Limit	High Limit	
Calcium			0.050		< 0.050	0.05000	0	45.6	-100	100	05/02/201
Magnesium			0.050		< 0.050	0.05000	0	0	-100	100	05/02/201
Potassium			0.100		< 0.100	0.1000	0	0	-100	100	05/02/201
Sodium			0.050		< 0.050	0.05000	0	49.6	-100	100	05/02/201
Batch 129737	SampType:	LCS		Units mg/L							
SampID: LCS-129	9737										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium			0.050			2.500	0	102.2	85	115	05/02/201
Magnesium			0.050		2.54	2.500	0	101.5	85	115	05/02/201
Potassium			0.100		2.37	2.500	0	94.8	85	115	05/02/201
Sodium			0.050		2.34	2 500	0	93.4	85	115	05/02/201
						2.000	ŭ				00/02/2011
Batch 129737	SampType:	MS		Units mg/L		2.000	•				00/02/201
		MS		Units mg/L		2.000	· ·				Date
			RL	Units mg/L Qual				%REC		High Limit	Date
SampID: 1704022					Result		SPK Ref Val	%REC 44.0			Date Analyzed
SamplD: 1704022 Analyses			RL	Qual	Result	Spike	SPK Ref Val		Low Limit	High Limit	Date Analyzed
SampID: 1704022 Analyses Calcium			RL 0.050	Qual	Result 579 3.89	Spike 2.500	SPK Ref Val	44.0	Low Limit	High Limit	Date Analyzec 05/02/201 05/02/201
SampID: 1704022 Analyses Calcium Magnesium			RL 0.050 0.050	Qual S	Result 579 3.89 29.8	Spike 2.500 2.500	SPK Ref Val 577.9 1.323	44.0 102.7	Low Limit 75 75	High Limit 125 125	
SampID: 1704022 Analyses Calcium Magnesium Potassium Sodium			RL 0.050 0.050 0.500	Qual S	Result 579 3.89 29.8	Spike 2.500 2.500 2.500	SPK Ref Val 577.9 1.323 26.53	44.0 102.7 131.2	Low Limit 75 75 75 75 75	High Limit 125 125 125	Date Analyzed 05/02/201 05/02/201 05/02/201
Analyses Calcium Magnesium Potassium Sodium Batch 129737	24-007BMS SampType:		RL 0.050 0.050 0.500	Qual S S	Result 579 3.89 29.8	Spike 2.500 2.500 2.500	SPK Ref Val 577.9 1.323 26.53	44.0 102.7 131.2	Low Limit 75 75 75 75 75	High Limit 125 125 125 125 125	Date Analyzed 05/02/201 05/02/201 05/02/201
Analyses Calcium Magnesium Potassium Sodium Batch 129737	24-007BMS SampType:	MSD	RL 0.050 0.050 0.500	Qual S S	Result 579 3.89 29.8	Spike 2.500 2.500 2.500 2.500	SPK Ref Val 577.9 1.323 26.53	44.0 102.7 131.2 97.6	Low Limit 75 75 75 75 75	High Limit 125 125 125 125 125	Date Analyzed 05/02/201 05/02/201 05/02/201 Date
Analyses Calcium Magnesium Potassium Sodium Batch 129737 SampID: 1704022	24-007BMS SampType:	MSD	RL 0.050 0.050 0.500 0.500	Qual S S Units mg/L	Result 579 3.89 29.8 18.6	Spike 2.500 2.500 2.500 2.500	SPK Ref Val 577.9 1.323 26.53 16.12	44.0 102.7 131.2 97.6	Low Limit 75 75 75 75 75	High Limit 125 125 125 125 125 Limit 20	Date Analyzed 05/02/201 05/02/201 05/02/201 Date Analyzed
Analyses Calcium Magnesium Potassium Sodium Batch 129737 SampID: 1704022 Analyses	24-007BMS SampType:	MSD	RL 0.050 0.050 0.500 0.050	Qual S S Units mg/L Qual	Result 579 3.89 29.8 18.6	Spike 2.500 2.500 2.500 2.500 Spike	SPK Ref Val 577.9 1.323 26.53 16.12	44.0 102.7 131.2 97.6	Low Limit 75 75 75 75 RPD	High Limit 125 125 125 125 125 Limit 20	Date Analyzec 05/02/201 05/02/201 05/02/201 Date Analyzec
Analyses Calcium Magnesium Potassium Sodium Batch 129737 SampID: 1704022 Analyses Calcium	24-007BMS SampType:	MSD	RL 0.050 0.050 0.500 0.050 RL 0.050	Qual S S Units mg/L Qual	Result 579 3.89 29.8 18.6 Result 581 3.91	Spike 2.500 2.500 2.500 2.500 Spike 2.500	SPK Ref Val 577.9 1.323 26.53 16.12 SPK Ref Val 577.9	44.0 102.7 131.2 97.6 %REC 128.0	Low Limit 75 75 75 75 75 RPD RPD Ref \ 579.0	High Limit 125 125 125 125 125 Limit 20 /al %RPD 0.36	Date Analyzed 05/02/201' 05/02/201' 05/02/201'

Molybdenum

Selenium

Thallium

1.0

1.0

1.0

Quality Control Results

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

Batch 129687	SampType:	MBLK	Units µg/L							
SampID: MBLK-12 Analyses	29687	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Antimony		1.0	Q uur	< 1.0		0	0	-100	100	05/01/201
Arsenic		1.0		< 1.0	1.000	0	0	-100	100	05/01/201
Barium		1.0		< 1.0		0	0	-100	100	05/01/201
Beryllium		1.0		< 1.0	1.000	0	0	-100	100	05/01/201
Boron		25.0		< 25.0	25.00	0	0	-100	100	05/01/201
Cadmium		1.0		< 1.0	1.000	0	0	-100	100	05/01/201
Chromium		1.0		< 1.0	1.000	0	0	-100	100	05/01/201
Cobalt		1.0		< 1.0	1.000	0	0	-100	100	05/01/201
Lead		1.0		< 1.0	1.000	0	0	-100	100	05/01/201
Lithium		1.0		< 1.0	1.000	0	81.2	-100	100	05/01/201
Molybdenum		1.0		< 1.0	1.000	0	0	-100	100	05/01/201
Selenium		1.0		< 1.0	1.000	0	0	-100	100	05/01/201
Thallium		1.0		< 1.0	1.000	0	66.4	-100	100	05/01/201
Batch 129687	SampType:	LCS	Units µg/L							
SampID: LCS-129	0687									Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony		1.0		519	500.0	0	103.8	80	120	05/01/201
Arsenic		1.0		544	500.0	0	108.9	80	120	05/01/201
Barium		1.0		2110	2000	0	105.6	80	120	05/01/201
Beryllium		1.0		57.5	50.00	0	115.0	80	120	05/01/201
Boron		25.0		575	500.0	0	115.0	80	120	05/01/20
Cadmium		1.0		52.5	50.00	0	105.0	80	120	05/01/201
Chromium		1.0		203	200.0	0	101.6	80	120	05/01/201
Cobalt		1.0		508	500.0	0	101.7	80	120	05/01/20
Lead		1.0		545	500.0	0	108.9	80	120	05/01/201

514 500.0

540 500.0

264 250.0

0

0

0

102.9

108.0

105.5

80

80

80

120

120

120

05/01/2017

05/01/2017

05/01/2017

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17040224

atch 129687 Samp	Type: MS	Units µg/L							
ampID: 17040224-002BM	S								Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyze
Antimony	1.0)	515	500.0	3.232	102.4	75	125	05/02/20
Arsenic	1.0)	553	500.0	31.11	104.4	75	125	05/02/20
Barium	1.0)	2130	2000	59.60	103.4	75	125	05/02/20
Beryllium	1.0)	49.7	50.00	0	99.3	75	125	05/02/20
Boron	500) S	27000	500.0	28330	-273.2	75	125	05/03/20
Cadmium	1.0)	51.2	50.00	0.6986	101.1	75	125	05/02/20
Chromium	1.0)	192	200.0	2.088	95.0	75	125	05/02/20
Cobalt	1.0)	475	500.0	0.3738	94.9	75	125	05/02/20
Lead	1.0)	522	500.0	1.153	104.2	75	125	05/02/20
Lithium	1.0)	638	500.0	109.4	105.7	75	125	05/02/20
Molybdenum	20.0)	3810	500.0	3403	80.7	75	125	05/03/20
Selenium	1.0)	498	500.0	8.572	97.9	75	125	05/02/20
Thallium	1.0)	252	250.0	0	100.8	75	125	05/02/20

Batch 129687	SampType:	MSD	Units µg/L					RPD L	imit 20	
SampID: 1704022	4-002BMSD									Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	l %RPD	Analyzed
Antimony		1.0		515	500.0	3.232	102.3	515.5	0.17	05/02/2017
Arsenic		1.0		550	500.0	31.11	103.9	553.3	0.52	05/02/2017
Barium		1.0		2120	2000	59.60	103.1	2127	0.26	05/02/2017
Beryllium		1.0		48.9	50.00	0	97.8	49.67	1.53	05/02/2017
Boron		500	S	26700	500.0	28330	-321.1	26960	0.89	05/03/2017
Cadmium		1.0		50.9	50.00	0.6986	100.4	51.23	0.65	05/02/2017
Chromium		1.0		192	200.0	2.088	95.2	192.1	0.20	05/02/2017
Cobalt		1.0		474	500.0	0.3738	94.7	474.9	0.22	05/02/2017
Lead		1.0		519	500.0	1.153	103.6	522.2	0.55	05/02/2017
Lithium		1.0		650	500.0	109.4	108.2	638.0	1.89	05/02/2017
Molybdenum		20.0	S	3770	500.0	3403	74.3	3806	0.84	05/03/2017
Selenium		1.0		504	500.0	8.572	99.0	498.3	1.06	05/02/2017
Thallium		1.0		250	250.0	0	99.8	252.0	0.96	05/02/2017

Lead

Lithium

Selenium

Thallium

Molybdenum

Quality Control Results

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17

atch 129738	SampType:	MBLK	Units µg/L							
ampID: MBLK-12	29738									Date Analyze
Analyses		RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	Allalyze
Antimony		1.0				0	0	-100	100	05/02/201
Arsenic		1.0		< 1.0	1.000	0	0	-100	100	05/02/20
Barium		1.0		< 1.0	1.000	0	0	-100	100	05/02/20
Beryllium		1.0		< 1.0	1.000	0	0	-100	100	05/03/20
Boron		25.0		< 25.0	25.00	0	0	-100	100	05/03/20
Cadmium		1.0		< 1.0	1.000	0	0	-100	100	05/02/20
Chromium		1.0		< 1.0	1.000	0	0	-100	100	05/03/20
Cobalt		1.0		< 1.0	1.000	0	0	-100	100	05/03/20
Lead		1.0		< 1.0	1.000	0	0	-100	100	05/02/20
Lithium		1.0		< 1.0	1.000	0	59.6	-100	100	05/03/20
Molybdenum		1.0		< 1.0	1.000	0	0	-100	100	05/02/20
Selenium		1.0		< 1.0	1.000	0	0	-100	100	05/02/20
Thallium		1.0		< 1.0	1.000	0	0	-100	100	05/02/20
atch 129738	SampType:	LCS	Units µg/L							
ampID: LCS-129	9738									Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyze
Antimony		1.0		457	500.0	0	91.3	80	120	05/02/20
Arsenic		1.0		478	500.0	0	95.5	80	120	05/02/20
Barium		1.0		1890	2000	0	94.6	80	120	05/02/20
Beryllium		1.0		51.3	50.00	0	102.5	80	120	05/03/20
Boron		25.0		502	500.0	0	100.3	80	120	05/03/20
Cadmium		1.0		45.6	50.00	0	91.1	80	120	05/02/20
Caaiiiiaiii										
Chromium		1.0		183	200.0	0	91.7	80	120	05/03/20

476 500.0

462 500.0

229 250.0

550

449

500.0

500.0

0

0

0

0

0

95.1

110.0

89.9

92.4

91.7

80

80

80

80

80

120

120

120

120

120

05/02/2017

05/03/2017

05/02/2017

05/02/2017

05/02/2017

1.0

1.0

1.0

1.0

1.0

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Batch 129738			JEIVIO (rotal)							
SampID: 1704022	SampType: 24-007BMS	MS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony			1.0	Quai	472	500.0	1.019	94.2	75	125	05/02/201
Arsenic			1.0		501	500.0	26.45	94.8	75	125	05/02/201
Barium			1.0		2020	2000	91.99	96.6	75	125	05/02/201
Beryllium			1.0		49.7	50.00	0	99.4	75	125	05/03/201
Boron			25.0	S	28200	500.0	26930	245.2	75	125	05/03/201
Cadmium			1.0	Ü	46.7	50.00	0.6973	92.1	75	125	05/02/201
Chromium			1.0		185	200.0	3.761	90.8	75	125	05/03/201
Cobalt			1.0		458	500.0	1.193	91.5	75	125	05/03/201
Lead			1.0		493	500.0	7.712	97.1	75	125	05/02/201
Lithium			1.0		627	500.0	97.46	105.9	75	125	05/03/201
Molybdenum			1.0		753	500.0	289.0	92.7	75	125	05/02/201
Selenium			1.0		567	500.0	118.1	89.7	75	125	05/02/201
Thallium			1.0		232		0	92.8	75	125	05/02/201
Batch 129738	SampType:	MSD		Units µg/L					RPD	Limit 20	
SampID: 1704022						~	00140 4141	0/550			Date Analyze
Analyses			RL	Qual			SPK Ref Val			/al %RPD	
Antimony			1.0		465	500.0	1.019	92.8	472.2	1.54	05/02/201
Arsenic			1.0		499	500.0	26.45	94.5	500.7	0.29	05/02/201
Barium			1.0		1990	2000	91.99	94.9	2024	1.65	05/02/201
Beryllium			1.0	_	48.9	50.00	0	97.7	49.72	1.73	05/03/201
Boron			25.0	S	27900	500.0	26930	192.9	28160	0.93	05/03/201
Cadmium			1.0		46.0	50.00	0 6072	91.0		1 17	05/02/201
					46.2		0.6973		46.75	1.17	
Chromium			1.0		186	200.0	3.761	91.2	185.3	0.48	05/03/201
Chromium Cobalt			1.0 1.0		186 464	200.0 500.0	3.761 1.193	91.2 92.6	185.3 458.5	0.48 1.25	05/03/201 05/03/201
Chromium Cobalt Lead			1.0 1.0 1.0		186	200.0 500.0 500.0	3.761 1.193 7.712	91.2 92.6 95.9	185.3 458.5 493.5	0.48 1.25 1.26	05/03/201 05/03/201 05/02/201
Chromium Cobalt Lead Lithium			1.0 1.0 1.0 1.0		186 464	200.0 500.0 500.0 500.0	3.761 1.193 7.712 97.46	91.2 92.6 95.9 103.8	185.3 458.5 493.5 627.1	0.48 1.25 1.26 1.68	05/03/201 05/03/201 05/02/201 05/03/201
Chromium Cobalt Lead Lithium Molybdenum			1.0 1.0 1.0 1.0 1.0		186 464 487	200.0 500.0 500.0 500.0 500.0	3.761 1.193 7.712 97.46 289.0	91.2 92.6 95.9 103.8 91.1	185.3 458.5 493.5 627.1 752.7	0.48 1.25 1.26 1.68 1.08	05/03/201 05/03/201 05/02/201 05/03/201 05/02/201
Chromium Cobalt Lead Lithium Molybdenum Selenium			1.0 1.0 1.0 1.0 1.0		186 464 487 617	200.0 500.0 500.0 500.0 500.0 500.0	3.761 1.193 7.712 97.46 289.0 118.1	91.2 92.6 95.9 103.8 91.1 89.7	185.3 458.5 493.5 627.1 752.7 566.7	0.48 1.25 1.26 1.68 1.08 0.03	05/03/201 05/03/201 05/02/201 05/03/201 05/02/201 05/02/201
Chromium Cobalt Lead Lithium Molybdenum			1.0 1.0 1.0 1.0 1.0		186 464 487 617 745	200.0 500.0 500.0 500.0 500.0 500.0	3.761 1.193 7.712 97.46 289.0	91.2 92.6 95.9 103.8 91.1	185.3 458.5 493.5 627.1 752.7	0.48 1.25 1.26 1.68 1.08	05/03/201 05/03/201 05/02/201 05/03/201 05/02/201 05/02/201
Chromium Cobalt Lead Lithium Molybdenum Selenium Thallium			1.0 1.0 1.0 1.0 1.0		186 464 487 617 745 567	200.0 500.0 500.0 500.0 500.0 500.0	3.761 1.193 7.712 97.46 289.0 118.1	91.2 92.6 95.9 103.8 91.1 89.7	185.3 458.5 493.5 627.1 752.7 566.7	0.48 1.25 1.26 1.68 1.08 0.03	05/03/201 05/03/201 05/02/201 05/03/201 05/02/201 05/02/201
Chromium Cobalt Lead Lithium Molybdenum Selenium Thallium SW-846 7470A (**) Batch 129695	SampType:	MBLK	1.0 1.0 1.0 1.0 1.0	Units µg/L	186 464 487 617 745 567	200.0 500.0 500.0 500.0 500.0 500.0	3.761 1.193 7.712 97.46 289.0 118.1	91.2 92.6 95.9 103.8 91.1 89.7	185.3 458.5 493.5 627.1 752.7 566.7	0.48 1.25 1.26 1.68 1.08 0.03	05/03/201 05/03/201 05/02/201 05/03/201 05/02/201 05/02/201
Chromium Cobalt Lead Lithium Molybdenum Selenium Thallium	SampType:	MBLK	1.0 1.0 1.0 1.0 1.0	Units µg/L	186 464 487 617 745 567	200.0 500.0 500.0 500.0 500.0 500.0	3.761 1.193 7.712 97.46 289.0 118.1	91.2 92.6 95.9 103.8 91.1 89.7	185.3 458.5 493.5 627.1 752.7 566.7	0.48 1.25 1.26 1.68 1.08 0.03	05/03/201 05/03/201 05/02/201 05/02/201 05/02/201 05/02/201
Chromium Cobalt Lead Lithium Molybdenum Selenium Thallium SW-846 7470A (** Batch 129695 SampID: MBLK-12	SampType:	MBLK	1.0 1.0 1.0 1.0 1.0 1.0		186 464 487 617 745 567 231	200.0 500.0 500.0 500.0 500.0 500.0 250.0	3.761 1.193 7.712 97.46 289.0 118.1 0	91.2 92.6 95.9 103.8 91.1 89.7 92.3	185.3 458.5 493.5 627.1 752.7 566.7 232.0	0.48 1.25 1.26 1.68 1.08 0.03	05/03/201 05/03/201 05/02/201 05/03/201 05/02/201 05/02/201
Chromium Cobalt Lead Lithium Molybdenum Selenium Thallium SW-846 7470A (** Batch 129695	SampType:	MBLK	1.0 1.0 1.0 1.0 1.0	Units µg/L Qual	186 464 487 617 745 567 231	200.0 500.0 500.0 500.0 500.0 250.0	3.761 1.193 7.712 97.46 289.0 118.1	91.2 92.6 95.9 103.8 91.1 89.7 92.3	185.3 458.5 493.5 627.1 752.7 566.7 232.0	0.48 1.25 1.26 1.68 1.08 0.03 0.55	05/03/201 05/03/201 05/02/201 05/03/201 05/02/201 05/02/201
Chromium Cobalt Lead Lithium Molybdenum Selenium Thallium SW-846 7470A (** Batch 129695 SampID: MBLK-12	SampType: 29695 SampType:		1.0 1.0 1.0 1.0 1.0 1.0		186 464 487 617 745 567 231	200.0 500.0 500.0 500.0 500.0 250.0	3.761 1.193 7.712 97.46 289.0 118.1 0	91.2 92.6 95.9 103.8 91.1 89.7 92.3	185.3 458.5 493.5 627.1 752.7 566.7 232.0	0.48 1.25 1.26 1.68 1.08 0.03 0.55	05/03/201 05/03/201 05/02/201 05/02/201 05/02/201 05/02/201 Date Analyzee
Chromium Cobalt Lead Lithium Molybdenum Selenium Thallium SW-846 7470A (** Batch 129695 SampID: MBLK-12 Analyses Mercury	SampType: 29695 SampType:		1.0 1.0 1.0 1.0 1.0 1.0	Qual	186 464 487 617 745 567 231 Result < 0.20	200.0 500.0 500.0 500.0 500.0 250.0 Spike 0.2000	3.761 1.193 7.712 97.46 289.0 118.1 0	91.2 92.6 95.9 103.8 91.1 89.7 92.3 %REC	185.3 458.5 493.5 627.1 752.7 566.7 232.0 Low Limit -100	0.48 1.25 1.26 1.68 1.08 0.03 0.55	05/03/201 05/03/201 05/02/201 05/02/201 05/02/201 05/02/201

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17040224

Batch 129707	SampType:	MBLK		Units µg/L							
SamplD: MBLK-129				- 64							Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20	•	< 0.20		0	0	-100	100	05/01/201
Batch 129707 SampID: LCS-1297	SampType:	LCS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20		4.64	5.000	0	92.8	85	115	05/01/201
Batch 129707 SampID: 17040224	SampType: -009BMS	MS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20			5.000	0	93.2	75	125	05/01/2017
Batch 129707 SampID: 17040224	SampType:	MSD		Units µg/L					RPD	Limit 15	
·	-009DIVISD		DI	0 1	D 1	C . 1	SPK Ref Val	% DEC	PPD Pof \	/al %RPD	Date Analyzed
Analyses Mercury			RL 0.20	Qual		5.000	0	92.8	4.661	0.40	05/01/201
Batch 129736	SampType:	MBLK		Units µg/L							
SampID: MBLK-129											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20		< 0.20		0	0	-100	100	05/01/201
Batch 129736 SampID: LCS-1297	SampType:	LCS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20			5.000	0	105.2	85	115	05/01/201
Batch 129736 SampID: 17040224		MS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20			5.000	0	101.0	75	125	05/01/201
Batch 129736	SampType:	MSD		Units µg/L					RPD	Limit 15	
SampID: 17040224	-007BMSD										Date
Analyses			RL	Qual			SPK Ref Val			/al %RPD	Analyzed
Mercury			0.20		4 96	5.000	0	99.2	5.049	1.79	05/01/201

Receiving Check List

http://www.teklabinc.com/

Work Order: 17040224 Client: Natural Resource Technology, Inc. Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 08-May-17 Carrier: Tim Mathis Received By: AMD Elizabeth a thurley Reviewed by: Completed by: Moor Dilalle On: On: 27-Apr-17 27-Apr-17 Amber M. Dilallo Elizabeth A. Hurley Extra pages included 8 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No __ Not Present Temp °C 4.62 Type of thermal preservation? Ice 🗹 Blue Ice Dry Ice None **~** No L Chain of custody present? Yes **~** Chain of custody signed when relinquished and received? Yes No No 🗹 Chain of custody agrees with sample labels? Yes **~** Samples in proper container/bottle? Yes No L **V** Sample containers intact? Yes No Sufficient sample volume for indicated test? No Yes **~** No 🗌 All samples received within holding time? Yes NA \square Field < Lab \square Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Water - at least one vial per sample has zero headspace? Yes 🗌 No 🗀 No VOA vials 🗸 No TOX containers Water - TOX containers have zero headspace? Yes No 🔙 Yes 🗌 No 🗸 Water - pH acceptable upon receipt?

Additional Nitric Acid was needed in L4, LPZ-3, and LPZ-17 upon arrival at the laboratory. AMD 4/27/17

NPDES/CWA TCN interferences checked/treated in the field?

No containers were labeled as LPZ-17. Per Tim Mathis, LPZ-17 was collected in containers labeled as LPZ-5 which was dry. EAH 5/1/17

Yes

Any No responses must be detailed below or on the COC.

No 🗌

NA 🗸

pg. 1 of 1 Work order # 17546224 **CHAIN OF CUSTODY**

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:	Natural Resource Technology, Inc.	Technology,	nc.			<u> </u>	Samples on: 🗷	n: 🗷 ICE	Ш	BLUE ICE		NO ICE	CE	7	3	ပွ				*
Address:	2422 East Washington Street	gton Street				<u>a</u>	Preserved in: 🗖 LAB	in: 🗡	8	FIELD	_		ŭΙ	SR L	FOR LAB USE ONLY	SE ON	그			
City / State / Zip	Bloomington, IL 61704	1704					Lab Notes: A HAO	の主め	در ر											
Contact: Steve	Steve Wiskes		Phone:	(414)	837-3614			5 5	<u>3</u>											
E-Mail: steve	steve.wiskes@obg.com		Fax:				Client Comments	ments												
Are these samples known to be involved in litigation? If ves. a su	wn to be involved in lit	igation? If ve	s. a surcharde will apply	will apply	Yes	°Z X	Total Metals: ICP/MS 6020A Sb As Ba Be B Cd Cr Co Pb Li Mo Se Ti, ICP 6010 Ca Mg K Na, and Hg	CP/MS 60	20A Sb	As Ba	Be B (S Cr	o Pb L	i Mo S	TI, IC	P 6010	CaM	gKNa	, and F	- g
Are these samples know	wn to be hazardous?	Yes	No No				Š													
Are there any required reporting limits to be met on the requested analysis? If yes, plimits in the comment section	eporting limits to be n	net on the rec	uested analys	is?. If yes, _I	olease provide	•	CLPZ-17: Alternate sampling point if LPZ-5 is dry.	ate samp	ing poir	tif LPZ	-5 is d	خ.								
	scuoli. Tes 🔏	9				*	1724 7	+ SAMP	SANDLE IN	3	Controlled Steven	180%	Steam							
Project	Project Name/Number		Sample	Sample Collector	r's Name		MATRIX	×			<u>N</u>	ICAT	E AN	INDICATE ANALYSIS		REQUESTED	STED			
Hennepin Pond 1 & 2 Additional Testing	dditional Testing		(we / a	MIKE MIKE								Field		Field Field		Fie				
sult	quested	Billing In	Billing Instructions	# and T	# and Type of Containers				C alinit		SM		ield		ld T					
X Standard 1-2 D	1-2 Day (100% Surcharge)	AMERICAN PROPERTY OF THE PROPE	AND AND THE RESIDENCE OF THE PROPERTY OF THE P			ach		al .l .	aCC		251	vati SV	B Lea	H+E	emp VI 25	urbi 130-				
Other 3	3 Day (50% Surcharge)			HNO		ate		1.51	33) Carb	925 lyd	uctiv 0-B		chat		erat 550	dity	921	2540 9036	etals	
	Sample Identification	Date/Tii	Date/Time Sampled									0-0				SM				
17040224 14	7	4-25-17	1322	1 1		×			×	×	×	×	×	×	×	×	×	×	×	
LPZ-1	.1		1734	1 1		×	_		×	×	×	×	×	×	×	×	×	×	×	
°-243 Thz-3	3 4		781	1 1		×			×	×	×	×	×	×	×	×	×	×	×	
rocy LPZ-5	* * *		1330	1 1		×			×	×	×	×	×	×	×	×	×	×	×	
-ce 5 LPZ-13			(307 strate	0		×							×	THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O						
1-ZGE LPZ-15	-15		(310	0		×	The state of the s						×							
-ca1 LPZ	LPZ-17 ★	18.	1844 1316	0		×			×	×	×	×	×	×	×	7	x	义	Х	
,008 L4 DUP	UP		1322	_		×			×	×	×	×	×	×	×	×	×		×	
- 009 Field	Field Blank	A	1900	-		×			×	×							×	×	×	
Re	Relinquished By			Date/Ti	me			Re	Received By	By						Dat	Date/Time	 		
7	X		1.42/	17 1640	٥))	admy)() '	100	B				5		$\Big _{\widehat{}}$	3	979		
>														>						
The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this	is agreement on beh	alf of the clier	nt, acknowledg	es that he/s	the has read	and under	stands the te	rms and	condition	is of th	<u>.s</u>		1	BottleOrder:	rder:	37016	116	27	ا	

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions.

September 22, 2017

Steve Wiskes Natural Resource Technology, Inc. 2422 East Washington Street Suite 104

Bloomington, IL 61704 TEL: (414) 837-3614 FAX: (414) 837-3608

RE: Hennepin Pond 1 & 2 Additional Testing WorkOrder: 17081821

Dear Steve Wiskes:

TEKLAB, INC received 9 samples on 9/8/2017 1:10:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Project Manager (618)344-1004 ex 16

MAustin@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing

Report Date: 22-Sep-17

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Sample Summary	15
Dates Report	16
Quality Control Results	19
Receiving Check List	25
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing

Report Date: 22-Sep-17

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing

Report Date: 22-Sep-17

Cooler Receipt Temp: 1.02 °C

An employee of Teklab, Inc. collected the sample(s).

LPZ-1, LPZ-3, and LPZ-5 will not be reported; wells were dry. TM/EAH 9/8/17

LPZ-17 to be used as alternate sampling point for LPZ-5. MLA 9/8/17

Locations

	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	jhriley@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing

Report Date: 22-Sep-17

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2018	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2018	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2018	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2018	Collinsville
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2018	Collinsville
Arkansas	ADEQ	88-0966		3/14/2018	Collinsville
Illinois	IDPH	17584		5/31/2019	Collinsville
Indiana	ISDH	C-IL-06		1/31/2018	Collinsville
Kentucky	KDEP	98006		12/31/2017	Collinsville
Kentucky	UST	0073		1/31/2018	Collinsville
Louisiana	LDPH	LA170027		12/31/2017	Collinsville
Missouri	MDNR	930		1/31/2018	Collinsville
Missouri	MDNR	00930		5/31/2017	Collinsville
Oklahoma	ODEQ	9978		8/31/2018	Collinsville
Tennessee	TDEC	04905		1/31/2018	Collinsville

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 22-Sep-17

Lab ID: 17081821-001 Client Sample ID: L4

Matrix: LEACHATE Collection Date: 09/06/2017 15:15

Maura, LLACHATE				Concendi	Date. 09/	700,2017	15.15	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to leachate from measuring point		0		14.57	ft	1	09/06/2017 15:15	R237731
STANDARD METHOD 4500-H I	B FIELD							
рН		1.00		7.85		1	09/06/2017 15:15	R237731
STANDARD METHODS 2130 E	3 FIELD							
Turbidity		1.0		8.5	NTU	1	09/06/2017 15:15	R237731
STANDARD METHODS 18TH E	D. 2580 B FIELD							
Oxidation-Reduction Potential		-300		-85	mV	1	09/06/2017 15:15	R237731
STANDARD METHODS 2510 B	FIELD							
Conductivity		1		1130	μS/cm	1	09/06/2017 15:15	R237731
STANDARD METHODS 2550 B	FIELD							
Temperature		0		14.72	°C	1	09/06/2017 15:15	R237731
STANDARD METHODS 4500-C) G FIELD							
Oxygen, Dissolved		1.00		< 1.00	mg/L	1	09/06/2017 15:15	R237731
STANDARD METHODS 2320 E	3				-			
Alkalinity, Total (as CaCO3)	NELAP	0		220	mg/L	1	09/11/2017 15:05	R237563
STANDARD METHODS 2320 B								
Alkalinity, Carbonate (as CaCO3)	NELAP	0		0	mg/L	1	09/11/2017 15:05	R237566
STANDARD METHODS 2320 B	(TOTAL)	-		-	J			
Alkalinity, Bicarbonate (as CaCO3		0		220	mg/L	1	09/11/2017 15:05	R237565
STANDARD METHODS 2540 C	-				9/ =	•	3371772317 13133	. 120.000
Total Dissolved Solids	NELAP	20		972	mg/L	1	09/12/2017 16:16	R237592
SW-846 9036 (TOTAL)	14227.0				1119/12	•	00/12/2017 10:10	11207002
Sulfate	NELAP	200		419	mg/L	20	09/12/2017 15:46	R237579
SW-846 9214 (TOTAL)	14227.0	200		410	1119/12		00/12/2017 10:10	11207070
Fluoride	NELAP	0.10		0.19	mg/L	1	09/08/2017 18:28	R237461
SW-846 9251 (TOTAL)	14227.0	0.10		0.10	9/.	•	00/00/2011 10:20	11207 101
Chloride	NELAP	5		21	mg/L	1	09/12/2017 15:08	R237578
				21	mg/L	'	03/12/2017 13:00	11201010
SW-846 3005A, 6010B, METAL Calcium	NELAP	0.050		202	mg/L	1	09/11/2017 14:25	133077
Magnesium	NELAP	0.050		35.1	mg/L	1	09/11/2017 14:25	
Potassium	NELAP	0.200		12.7	mg/L	2	09/12/2017 14:25	
Sodium	NELAP	0.050		35.1	mg/L	1	09/11/2017 14:25	
SW-846 3005A, 6020A, METAL					9/ =	•	337177231711123	
Antimony	NELAP	1.0		5.1	μg/L	5	09/11/2017 15:16	133980
Arsenic	NELAP	1.0		61.0	μg/L	5	09/11/2017 15:16	
Barium	NELAP	1.0		51.8	μg/L	5	09/11/2017 15:16	
Beryllium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:16	
Boron	NELAP	25.0		32000	μg/L	5	09/11/2017 15:16	
Cadmium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:16	
Chromium	NELAP	1.0	J	0.3	μg/L	5	09/11/2017 15:16	
Cobalt	NELAP	1.0	J	0.3	μg/L	5	09/11/2017 15:16	
Lead	NELAP	1.0		< 1.0	μg/L	5	09/12/2017 14:29	133980
Lithium		1.0		62.7	μg/L	5	09/11/2017 15:16	133980
Molybdenum	NELAP	1.0		77.3	μg/L	5	09/11/2017 15:16	133980
Selenium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:16	133980

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 22-Sep-17

Lab ID: 17081821-001 Client Sample ID: L4

Matrix: LEACHATE Collection Date: 09/06/2017 15:15

Analyses	Certification	RL Qua	l Result	Units	DF	Date Analyzed Batch		
SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL)								
Thallium	NELAP	1.0	< 1.0	μg/L	5	09/11/2017 15:16 133980		
SW-846 7470A (TOTAL	.)							
Mercury	NELAP	0.20	< 0.20	μg/L	1	09/11/2017 9:32 133984		

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 22-Sep-17

Lab ID: 17081821-005 Client Sample ID: LPZ-13

Matrix: LEACHATE Collection Date: 09/07/2017 15:00

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch
FIELD ELEVATION MEASI	JREMENTS						
Depth to leachate from measuring point		0		12.85	ft	1	09/07/2017 15:00 R237731

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing
Lab ID: 17081821-006
Report Date: 22-Sep-17
Client Sample ID: LPZ-15

Matrix: LEACHATE Collection Date: 09/07/2017 15:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to leachate from measu point	uring	0		15.05	ft	1	09/07/2017 15:45 R237731

Client Project: Hennepin Pond 1 & 2 Additional Testing

Laboratory Results

http://www.teklabinc.com/

Report Date: 22-Sep-17

Client: Natural Resource Technology, Inc. Work Order: 17081821

Lab ID: 17081821-007 Client Sample ID: LPZ-17

Matrix: LEACHATE Collection Date: 09/06/2017 15:01

Maura, LLACHATE				Concention	Date. 09/	00/2017	15.01	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to leachate from measuring point		0		15.92	ft	1	09/06/2017 15:01	R237731
STANDARD METHOD 4500-H	B FIFI D							
pH		1.00		10.46		1	09/06/2017 15:01	R237731
STANDARD METHODS 2130 I	R FIFI D					<u> </u>		
Turbidity	5 1 IEE5	1.0		9.8	NTU	1	09/06/2017 15:01	R237731
STANDARD METHODS 18TH	FD. 2580 B FIFI D					<u> </u>		
Oxidation-Reduction Potential	25, 2000 5 ; ;225	-300		-230	mV	1	09/06/2017 15:01	R237731
STANDARD METHODS 2510 B	B FIELD							
Conductivity		1		1820	μS/cm	1	09/06/2017 15:01	R237731
STANDARD METHODS 2550 B	B FIELD							
Temperature		0		16.84	°C	1	09/06/2017 15:01	R237731
STANDARD METHODS 4500-0) G FIELD							
Oxygen, Dissolved	0111111	1.00		< 1.00	mg/L	1	09/06/2017 15:01	R237731
STANDARD METHODS 2320 I	В				J			
Alkalinity, Total (as CaCO3)	NELAP	0		162	mg/L	1	09/11/2017 15:20	R237563
STANDARD METHODS 2320 B	3				J			
Alkalinity, Carbonate (as CaCO3)	NELAP	0		68	mg/L	1	09/11/2017 15:20	R237566
STANDARD METHODS 2320 B	3 (TOTAL)				J			
Alkalinity, Bicarbonate (as CaCO3	•	0		0	mg/L	1	09/11/2017 15:20	R237565
STANDARD METHODS 2540 C					J			
Total Dissolved Solids	NELAP	20		1910	mg/L	1	09/12/2017 16:16	R237592
SW-846 9036 (TOTAL)					J			
Sulfate	NELAP	500		1120	mg/L	50	09/12/2017 16:03	R237579
SW-846 9214 (TOTAL)								
Fluoride	NELAP	0.10	J	0.05	mg/L	1	09/08/2017 18:30	R237461
SW-846 9251 (TOTAL)					-			
Chloride	NELAP	5		16	mg/L	1	09/12/2017 15:54	R237578
SW-846 3005A, 6010B, METAL	S BY ICP (TOTAL)						
Calcium	NELAP	0.050	S	538	mg/L	1	09/11/2017 14:31	133977
Magnesium	NELAP	0.050		2.63	mg/L	1	09/11/2017 14:31	133977
Potassium	NELAP	0.500		25.5	mg/L	5	09/12/2017 14:35	133977
Sodium	NELAP	0.050		21.6	mg/L	1	09/11/2017 14:31	133977
MS QC limits for Ca are not applicat								
SW-846 3005A, 6020A, METAL	•	•						
Antimony	NELAP	1.0		1.3	μg/L	5	09/11/2017 15:24	
Arsenic	NELAP	1.0		38.1	μg/L 	5	09/11/2017 15:24	
Barium	NELAP	1.0		97.2	μg/L	5	09/11/2017 15:24	
Beryllium	NELAP	1.0	J	0.8	μg/L	5	09/11/2017 15:24	
Boron	NELAP	25.0	S	28600	μg/L	5	09/11/2017 15:24	
Cadmium	NELAP	1.0		1.3	μg/L	5	09/11/2017 15:24	
Chromium	NELAP	1.0		8.3	μg/L	5	09/11/2017 15:24	
Cobalt Lead	NELAP NELAP	1.0 1.0		2.3	μg/L	5 5	09/11/2017 15:24 09/12/2017 14:37	
Lead Lithium	INELAP	1.0		15.3 90.3	μg/L μg/L	5 5	09/12/2017 14:37	
Molybdenum	NELAP	1.0		90.3 299	μg/L μg/L	5 5	09/11/2017 15:24	
Morybuorium	IVELAI	1.0		233	P9′ ∟	0	00/11/2017 10:24	100000

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing
Lab ID: 17081821-007
Client Sample ID: LPZ-17

Matrix: LEACHATE Collection Date: 09/06/2017 15:01

A	analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch
SW-846 3005	A, 6020A, MET	ALS BY ICPMS (TOTA	L)					
Selenium		NELAP	1.0		7.0	μg/L	5	09/11/2017 15:24 133980
Thallium		NELAP	1.0	J	0.5	μg/L	5	09/11/2017 15:24 133980
MS QC limits fo	or B are not applic	able due to high sample/s	oike ratio.					
SW-846 7470	A (TOTAL)							
Mercury		NELAP	0.20		< 0.20	μg/L	1	09/11/2017 9:46 133984

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Client Sample ID: L4 DUP

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 22-Sep-17 Lab ID: 17081821-008

Matrix: LEACHATE Collection Date: 09/06/2017 15:15

Manix. LLACHATE				Concention	Date. 09/	00/2017	13.13	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to leachate from measuring point	J	0		14.57	ft	1	09/06/2017 15:15	R237731
STANDARD METHOD 4500-H	B FIELD							
рН		1.00		7.85		1	09/06/2017 15:15	R237731
STANDARD METHODS 2130	B FIELD							
Turbidity		1.0		8.5	NTU	1	09/06/2017 15:15	R237731
STANDARD METHODS 18TH	ED. 2580 B FIELD							
Oxidation-Reduction Potential		-300		-85	mV	1	09/06/2017 15:15	R237731
STANDARD METHODS 2510 B	3 FIELD							
Conductivity		1		1130	μS/cm	1	09/06/2017 15:15	R237731
STANDARD METHODS 2550 E	3 FIELD							
Temperature		0		14.72	°C	1	09/06/2017 15:15	R237731
STANDARD METHODS 4500-0	O G FIELD							
Oxygen, Dissolved		1.00		< 1.00	mg/L	1	09/06/2017 15:15	R237731
STANDARD METHODS 2320	В							
Alkalinity, Total (as CaCO3)	NELAP	0		226	mg/L	1	09/11/2017 15:28	R237563
STANDARD METHODS 2320 E	3							
Alkalinity, Carbonate (as CaCO3)	NELAP	0		0	mg/L	1	09/11/2017 15:28	R237566
STANDARD METHODS 2320 E	3 (TOTAL)							
Alkalinity, Bicarbonate (as CaCO3	B) NELAP	0		226	mg/L	1	09/11/2017 15:28	R237565
STANDARD METHODS 2540 (C (TOTAL)							
Total Dissolved Solids	NELAP	20		954	mg/L	1	09/12/2017 16:46	R237592
SW-846 9036 (TOTAL)								
Sulfate	NELAP	100		439	mg/L	10	09/12/2017 16:11	R237579
SW-846 9214 (TOTAL)								
Fluoride	NELAP	0.10		0.19	mg/L	1	09/08/2017 18:34	R237461
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		22	mg/L	1	09/12/2017 16:02	R237578
SW-846 3005A, 6010B, METAI	LS BY ICP (TOTAL))						
Calcium	NELAP	0.050		210	mg/L	1	09/11/2017 14:48	133977
Magnesium	NELAP	0.050		35.2	mg/L	1	09/11/2017 14:48	133977
Potassium	NELAP	0.200		12.5	mg/L	2	09/12/2017 14:53	
Sodium	NELAP	0.050		35.3	mg/L	1	09/11/2017 14:48	133977
SW-846 3005A, 6020A, METAI		-						
Antimony	NELAP	1.0		4.5	μg/L	5	09/11/2017 15:33	
Arsenic	NELAP	1.0		66.4	μg/L	5	09/11/2017 15:33	
Barium	NELAP	1.0		59.1	μg/L	5	09/11/2017 15:33	
Beryllium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:33	
Boron	NELAP	25.0		33300	μg/L	5	09/11/2017 15:33	
Cadmium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:33	
Chromium	NELAP	1.0	J	0.3	μg/L	5	09/11/2017 15:33	
Cobalt	NELAP	1.0	J	0.3	μg/L	5	09/11/2017 15:33	
Lead	NELAP	1.0		< 1.0	μg/L	5	09/12/2017 14:45	
Lithium	NELAD	1.0		63.8	μg/L	5 5	09/11/2017 15:33	
Molybdenum Selenium	NELAP NELAP	1.0 1.0		74.4 < 1.0	μg/L	5 5	09/11/2017 15:33 09/11/2017 15:33	
Gieriium	INLLAF	1.0		< 1.0	μg/L	J	09/11/2017 10:33	100800

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 22-Sep-17

Lab ID: 17081821-008 Client Sample ID: L4 DUP

Matrix: LEACHATE Collection Date: 09/06/2017 15:15

Anal	yses Certificat	ion RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 3005A, 6	6020A, METALS BY ICPM	S (TOTAL)						
Thallium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:33	133980
SW-846 7470A (*	TOTAL)							
Mercury	NELAP	0.20		< 0.20	μg/L	1	09/11/2017 9:49	133984

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 22-Sep-17

Lab ID: 17081821-009 Client Sample ID: Field Blank

Matrix: LEACHATE Collection Date: 09/06/2017 15:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
STANDARD METHODS 2320 E	3								
Alkalinity, Total (as CaCO3)	NELAP	0		2	mg/L	1	09/11/2017 15:33	R237563	
STANDARD METHODS 2320 B									
Alkalinity, Carbonate (as CaCO3)	NELAP	0		0	mg/L	1	09/11/2017 15:33	R237566	
STANDARD METHODS 2320 B	(TOTAL)								
Alkalinity, Bicarbonate (as CaCO3)) NELAP	0		2	mg/L	1	09/11/2017 15:33	R237565	
STANDARD METHODS 2540 C	(TOTAL)								
Total Dissolved Solids	NELAP	20	J	10	mg/L	1	09/12/2017 16:46	R237592	
SW-846 9036 (TOTAL)									
Sulfate	NELAP	10		< 10	mg/L	1	09/12/2017 16:13	R237579	
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.10		< 0.10	mg/L	1	09/08/2017 18:35	R237461	
SW-846 9251 (TOTAL)									
Chloride	NELAP	5		< 5	mg/L	1	09/12/2017 16:10	R237578	
SW-846 3005A, 6010B, METAL	S BY ICP (TOTAL))							
Calcium	NELAP	0.050		< 0.050	mg/L	1	09/11/2017 14:54	133977	
Magnesium	NELAP	0.050		< 0.050	mg/L	1	09/11/2017 14:54	133977	
Potassium	NELAP	0.100		< 0.100	mg/L	1	09/12/2017 15:02	133977	
Sodium	NELAP	0.050		< 0.050	mg/L	1	09/11/2017 14:54	133977	
SW-846 3005A, 6020A, METAL	S BY ICPMS (TOT	AL)							
Antimony	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Arsenic	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Barium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Beryllium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Boron	NELAP	25.0	J	21	μg/L	5	09/12/2017 14:21	133980	
Cadmium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Chromium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Cobalt	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Lead	NELAP	1.0		< 1.0	μg/L	5	09/12/2017 14:21	133980	
Lithium		1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Molybdenum	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Selenium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
Thallium	NELAP	1.0		< 1.0	μg/L	5	09/11/2017 15:41	133980	
SW-846 7470A (TOTAL)									
Mercury	NELAP	0.20		< 0.20	μg/L	1	09/11/2017 9:52	133984	

Sample Summary

http://www.teklabinc.com/

Lab Sample ID	Client Sample ID	Matrix	Fractions	Collection Date
17081821-001	L4	Leachate	2	09/06/2017 15:15
17081821-002	LPZ-1	Leachate	1	09/06/2017 13:48
17081821-003	LPZ-3	Leachate	1	09/06/2017 13:40
17081821-004	LPZ-5	Leachate	1	09/06/2017 13:36
17081821-005	LPZ-13	Leachate	1	09/07/2017 15:00
17081821-006	LPZ-15	Leachate	1	09/07/2017 15:45
17081821-007	LPZ-17	Leachate	2	09/06/2017 15:01
17081821-008	L4 DUP	Leachate	2	09/06/2017 15:15
17081821-009	Field Blank	Leachate	2	09/06/2017 15:25

Dates Report

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
17081821-001A	L4	09/06/2017 15:15	09/08/2017 13:10		
	Field Elevation Measurements				09/06/2017 15:15
	Standard Method 4500-H B Field				09/06/2017 15:15
	Standard Methods 2130 B Field				09/06/2017 15:15
	Standard Methods 2320 B				09/11/2017 15:05
	Standard Methods 18th Ed. 2580 B Field				09/06/2017 15:15
	Standard Methods 2320 B				09/11/2017 15:05
	Standard Methods 2320 B (Total)				09/11/2017 15:05
	Standard Methods 2510 B Field				09/06/2017 15:15
	Standard Methods 2540 C (Total)				09/12/2017 16:16
	Standard Methods 2550 B Field				09/06/2017 15:15
	Standard Methods 4500-O G Field				09/06/2017 15:15
	SW-846 9036 (Total)				09/12/2017 15:46
	SW-846 9214 (Total)				09/08/2017 18:28
	SW-846 9251 (Total)				09/12/2017 15:08
7081821-001B	L4	09/06/2017 15:15	09/08/2017 13:10		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/11/2017 14:25
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/12/2017 14:25
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/11/2017 15:16
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/12/2017 14:29
	SW-846 7470A (Total)			09/08/2017 14:51	09/11/2017 9:32
7081821-005A	LPZ-13	09/07/2017 15:00	09/08/2017 13:10		
	Field Elevation Measurements				09/07/2017 15:00
7081821-006A	LPZ-15	09/07/2017 15:45	09/08/2017 13:10		
	Field Elevation Measurements				09/07/2017 15:45
7081821-007A	LPZ-17	09/06/2017 15:01	09/08/2017 13:10		
	Field Elevation Measurements				09/06/2017 15:01
	Standard Method 4500-H B Field				09/06/2017 15:01
	Standard Methods 2130 B Field				09/06/2017 15:01
	Standard Methods 2320 B				09/11/2017 15:20
	Standard Methods 18th Ed. 2580 B Field				09/06/2017 15:01
	Standard Methods 2320 B				09/11/2017 15:20
	Standard Methods 2320 B (Total)				09/11/2017 15:20
	Standard Methods 2510 B Field				09/06/2017 15:01
	Standard Methods 2540 C (Total)				09/12/2017 16:16
	Standard Methods 2550 B Field				09/06/2017 15:01
	Standard Methods 4500-O G Field				09/06/2017 15:01

Dates Report

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Work Order: 17081821

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9036 (Total)				09/12/2017 16:03
	SW-846 9214 (Total)				09/08/2017 18:30
	SW-846 9251 (Total)				09/12/2017 15:54
17081821-007B	LPZ-17	09/06/2017 15:01	09/08/2017 13:10		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/11/2017 14:31
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/12/2017 14:35
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/11/2017 15:24
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/12/2017 14:37
	SW-846 7470A (Total)			09/08/2017 14:51	09/11/2017 9:46
7081821-008A	L4 DUP	09/06/2017 15:15	09/08/2017 13:10		
	Field Elevation Measurements				09/06/2017 15:15
	Standard Method 4500-H B Field				09/06/2017 15:15
	Standard Methods 2130 B Field				09/06/2017 15:15
	Standard Methods 2320 B				09/11/2017 15:28
	Standard Methods 18th Ed. 2580 B Field				09/06/2017 15:15
	Standard Methods 2320 B				09/11/2017 15:28
	Standard Methods 2320 B (Total)				09/11/2017 15:28
	Standard Methods 2510 B Field				09/06/2017 15:15
	Standard Methods 2540 C (Total)				09/12/2017 16:46
	Standard Methods 2550 B Field				09/06/2017 15:15
	Standard Methods 4500-O G Field				09/06/2017 15:15
	SW-846 9036 (Total)				09/12/2017 16:11
	SW-846 9214 (Total)				09/08/2017 18:34
	SW-846 9251 (Total)				09/12/2017 16:02
7081821-008B	L4 DUP	09/06/2017 15:15	09/08/2017 13:10		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/11/2017 14:48
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/12/2017 14:53
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/11/2017 15:33
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/12/2017 14:45
	SW-846 7470A (Total)			09/08/2017 14:51	09/11/2017 9:49
7081821-009A	Field Blank	09/06/2017 15:25	09/08/2017 13:10		
	Standard Methods 2320 B				09/11/2017 15:33
	Standard Methods 2320 B				09/11/2017 15:33
	Standard Methods 2320 B (Total)				09/11/2017 15:33
	Standard Methods 2540 C (Total)				09/12/2017 16:46
	SW-846 9036 (Total)				09/12/2017 16:13
	SW-846 9214 (Total)				09/08/2017 18:35

Dates Report

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9251 (Total)				09/12/2017 16:10
17081821-009B	Field Blank	09/06/2017 15:25	09/08/2017 13:10		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/11/2017 14:54
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/12/2017 15:02
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/11/2017 15:41
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/12/2017 14:21
	SW-846 7470A (Total)			09/08/2017 14:51	09/11/2017 9:52

http://www.teklabinc.com/

STANDARD METH	1OD 4500-H	R FIFI I	n								
Batch R237731	SampType:			Units							
SampID: LCS-R237	731										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
рН			1.00		7.00	7.000	0	100.0	99.1	100.9	09/06/2017
STANDARD METH	HODS 2510 E	3 FIELD)								
Batch R237731 SampID: LCS-R237	SampType: 731	LCS		Units µmhos							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Conductivity			1		1410	1412	0	99.9	90	110	09/06/2017
STANDARD METH											
Batch R237563 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Alkalinity, Total (a	s CaCO3)		0		0						09/11/2017
Batch R237563 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Alkalinity, Total (a	s CaCO3)		0	Quui		232.0	0	99.1	90	110	09/11/2017
Batch R237563 SamplD: 17081821-	SampType:	MS		Units mg/L							.
Analyses	OUTAINIO		RL	Oual	Dogult	Cailea	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Alkalinity, Total (a	s CaCO3)		0	Quai		93.00	220.0	96.8	85	115	09/11/2017
Batch R237563	SampType:	MSD		Units mg/L					RPD	Limit 10	
SampID: 17081821-	-001AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Alkalinity, Total (a	s CaCO3)		0		308	93.00	220.0	94.6	310.0	0.65	09/11/2017
STANDARD METH	HODS 2540 C	C (TOTA	AL)								
Batch R237592	SampType:	MBLK		Units mg/L							
SampID: MBLK							001/0 /1/1				Date Analyzed
Analyses			RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	
Total Dissolved So Total Dissolved So			20 20		< 20 < 20						09/12/2017 09/12/2017
Total Dissolved So			20	J	12						09/12/2017
Batch R237592 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved So	olids		20	-		1000	0	99.0	90	110	09/12/2017

http://www.teklabinc.com/

STANDARD METH	HODS 2540 C	: (ΤΟΤΔ	4.)								
Batch R237592 SampID: LCSQC	SampType:			Units mg/L							Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved S	olids		20	Q out	932	1000	0	93.2	90	110	09/12/2017
Total Dissolved S	olids		20		984	1000	0	98.4	90	110	09/12/2017
Batch R237592 SampID: 17081821	SampType: -001ADUP	DUP		Units mg/L					RPD	Limit 5	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Total Dissolved S	olids		20		984				972.0	1.23	09/12/2017
SW-846 9036 (TO	TAL)										
Batch R237579 SampID: ICB/MBLk	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						09/12/2017
Batch R237579 SampID: ICV/LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		20	20.00	0	98.9	90	110	09/12/2017
Batch R237579 SampID: 17081821	SampType: -001AMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			200		597		418.6	89.2	85	115	09/12/2017
Batch R237579 SampID: 17081821	SampType: -001AMSD	MSD		Units mg/L					RPD	Limit 10	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Sulfate			200		611		418.6	96.4	597.0	2.37	09/12/2017
SW-846 9214 (TO	TAL)										
Batch R237461 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10		< 0.10						09/08/2017
Batch R237461 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val		Low Limit	High Limit	Analyzed
Fluoride			0.10		1.06	1.000	0	105.5	90	110	09/08/2017

http://www.teklabinc.com/

SW-846 9214 (TOT	AL)										
	SampType:	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10		2.16	2.000	0.05000	105.6	85	115	09/08/2017
Batch R237461 SampID: 17081821-0	SampType:	MSD		Units mg/L					RPD	Limit 10	5.
•	JOT AIVISD		DI	Ovel	Dagult	Cailea	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Date Analyzed
Analyses Fluoride			0.10	Qual		2.000	0.05000	107.8	2.162	2.01	09/08/2017
SW-846 9251 (TOTA	AL)										
<u> </u>	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		< 5						09/12/2017
Batch R237578 SampID: ICV/LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		21	20.00	0	105.3	90	110	09/12/2017
Batch R237578 SampID: 17081821-0	SampType: 001AMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		38	20.00	20.81	86.4	85	115	09/12/2017
Batch R237578 SampID: 17081821-0	SampType:	MSD		Units mg/L					RPD	Limit 15	
·	OTAMOD		RL	Oual	Dogult	Cnilso	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Date Analyzed
Analyses Chloride			5	Quai		20.00	20.81	86.4	38.08	0.05	09/12/2017
SW-846 3005A, 601	IOB. METAL	S BY I	CP (TO1	ΓAL)							
	SampType:			Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium			0.0500	-	< 0.0500		0	0	-100	100	09/11/2017
Calcium			0.0500		< 0.0500	0.05000	0	0	-100	100	09/11/2017
Magnesium			0.0500		< 0.0500	0.05000	0	0	-100	100	09/11/2017
Magnesium			0.0500		< 0.0500	0.05000	0	0	-100	100	09/11/2017
Potassium			0.100		< 0.100	0.1000	0	0	-100	100	09/12/2017
Sodium			0.0500		< 0.0500	0.05000	0	0	-100	100	09/11/2017
Sodium			0.0500		< 0.0500	0.05000	0	0	-100	100	09/11/2017

Thallium

1.0

Quality Control Results

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 22-Sep-17

SW-846 3005A, 60	SampType:		(101	Units mg/L							
Batch 133977 SampID: LCS-1339		LUS		Offics mg/L							
•	711		DI	0 1	D 1	G '1	CDV Dof Val	0/ DEC	Low Limit	High Limit	Date Analyze
Analyses Calcium			RL 0.0500	Qual		2.500	SPK Ref Val	107.4		115	09/11/201
Calcium			0.0500			2.500	0		85 85		09/11/201
							0	104.3	85	115	
Magnesium			0.0500			2.500	0	105.0	85	115	09/11/201
Magnesium			0.0500			2.500	0	107.3	85	115	09/11/201
Potassium			0.100			2.500	0	95.4	85	115	09/12/201
Sodium			0.0500			2.500	0	95.6	85	115	09/11/201
Sodium			0.0500		2.47	2.500	0	98.7	85	115	09/11/201
Batch 133977	SampType:	MS		Units mg/L							
SampID: 17081821	-007BMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyze
Calcium			0.050	S		2.500	538.2	-100.0	75	125	09/11/201
Magnesium			0.050		5.24	2.500	2.627	104.3	75	125	09/11/201
Potassium			0.500		27.9	2.500	25.48	95.8	75	125	09/12/20
Sodium			0.050		23.7	2.500	21.56	85.2	75	125	09/11/20
Batch 133977 SampID: 17081821	SampType:	MSD		Units mg/L					RPD	Limit 20	5.
Analyses	-007 DIVISD		RL	Qual	Result	Snike	SPK Ref Val	%REC	RPD Ref \	'al %RPD	Date Analyze
Calcium			0.050	S		2.500	538.2	-532.0	535.7	2.04	09/11/201
Magnesium			0.050			2.500	2.627	103.9	5.235	0.19	09/11/201
Potassium			0.500		27.7	2.500	25.48	89.8	27.88	0.54	09/13/20 ⁻
Sodium			0.050			2.500	21.56	90.4	23.69	0.55	09/11/20
				-							
Batch 133980	SampType:			ΓΟΤΑL) Units μg/L							Data
Batch 133980 SampID: MBLK-13	SampType:		[Units µg/L	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyze
Batch 133980 ampID: MBLK-13: Analyses	SampType:		RL	-			SPK Ref Val			High Limit	Analyze
Batch 133980 SampID: MBLK-13: Analyses Antimony	SampType:		RL 1.0	Units µg/L	< 1.0	1.000	0	0	-100	100	Analyze 09/11/20
Batch 133980 SampID: MBLK-13: Analyses Antimony Arsenic	SampType:		RL 1.0 1.0	Units µg/L	< 1.0 < 1.0	1.000 1.000	0 0	0 0	-100 -100	100 100	Analyze 09/11/20 09/11/20
Batch 133980 SampID: MBLK-13: Analyses Antimony Arsenic Barium	SampType:		RL 1.0 1.0	Units µg/L	< 1.0 < 1.0 < 1.0	1.000 1.000 1.000	0 0 0	0 0 0	-100 -100 -100	100 100 100	09/11/20 09/11/20 09/11/20
atch 133980 ampID: MBLK-133 Analyses Antimony Arsenic Barium Beryllium	SampType:		RL 1.0 1.0 1.0 1.0	Units µg/L	< 1.0 < 1.0 < 1.0 < 1.0	1.000 1.000 1.000 1.000	0 0 0	0 0 0 0	-100 -100 -100 -100	100 100 100 100	09/11/20 09/11/20 09/11/20 09/11/20
Batch 133980 SamplD: MBLK-133 Analyses Antimony Arsenic Barium Beryllium Boron	SampType:		RL 1.0 1.0 1.0 1.0 25.0	Units µg/L	< 1.0 < 1.0 < 1.0 < 1.0 < 25.0	1.000 1.000 1.000 1.000 25.00	0 0 0 0	0 0 0 0 0	-100 -100 -100 -100 -100	100 100 100 100 100	09/11/20 09/11/20 09/11/20 09/11/20 09/11/20
atch 133980 ampID: MBLK-13: Analyses Antimony Arsenic Barium Beryllium Boron Cadmium	SampType:		RL 1.0 1.0 1.0 1.0 25.0	Units µg/L	< 1.0 < 1.0 < 1.0 < 1.0 < 25.0 < 1.0	1.000 1.000 1.000 1.000 25.00 1.000	0 0 0 0 0	0 0 0 0 0 0	-100 -100 -100 -100 -100 -100	100 100 100 100 100 100	Analyz 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20
atch 133980 ampID: MBLK-13: Analyses Antimony Arsenic Barium Beryllium Boron Cadmium Chromium	SampType:		RL 1.0 1.0 1.0 25.0 1.0	Units µg/L	< 1.0 < 1.0 < 1.0 < 1.0 < 25.0 < 1.0 < 1.0	1.000 1.000 1.000 1.000 25.00 1.000	0 0 0 0 0 0	0 0 0 0 0 0	-100 -100 -100 -100 -100 -100	100 100 100 100 100 100 100	Analyz 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20
Batch 133980 SampID: MBLK-13: Analyses Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt	SampType:		RL 1.0 1.0 1.0 1.0 25.0 1.0 1.0 1.0	Units µg/L	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.000 1.000 1.000 1.000 25.00 1.000 1.000	0 0 0 0 0 0	0 0 0 0 0 0 0	-100 -100 -100 -100 -100 -100 -100	100 100 100 100 100 100 100	Analyz: 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20
Batch 133980 SamplD: MBLK-133 Analyses Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead	SampType:		RL 1.0 1.0 1.0 1.0 25.0 1.0 1.0 1.0 1.0	Units µg/L	<1.0 <1.0 <1.0 <1.0 <25.0 <1.0 <1.0 <1.0	1.000 1.000 1.000 1.000 25.00 1.000 1.000 1.000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	-100 -100 -100 -100 -100 -100 -100 -100	100 100 100 100 100 100 100 100	Analyz: 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20 09/12/20
Batch 133980 SampID: MBLK-133 Analyses Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium	SampType:		RL 1.0 1.0 1.0 1.0 25.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Units µg/L	<1.0 <1.0 <1.0 <1.0 <25.0 <1.0 <1.0 <1.0 <1.0	1.000 1.000 1.000 1.000 25.00 1.000 1.000 1.000 1.000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	-100 -100 -100 -100 -100 -100 -100 -100	100 100 100 100 100 100 100 100 100	Analyze 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20 09/11/20 09/12/20 09/11/20
Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead	SampType:		RL 1.0 1.0 1.0 1.0 25.0 1.0 1.0 1.0 1.0	Units µg/L	<1.0 <1.0 <1.0 <1.0 <25.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.000 1.000 1.000 1.000 25.00 1.000 1.000 1.000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	-100 -100 -100 -100 -100 -100 -100 -100	100 100 100 100 100 100 100 100	Analyze 09/11/20

< 1.0 1.000

0

-100

09/11/2017

100

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

	SampType:	LCS	Units µg/L							
ampID: LCS-133980										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyze
Antimony		1.0		487	500.0	0	97.4	80	120	09/11/201
Arsenic		1.0		522	500.0	0	104.3	80	120	09/11/201
Barium		1.0		2020	2000	0	101.0	80	120	09/11/201
Beryllium		1.0		52.8	50.00	0	105.7	80	120	09/11/201
Boron		25.0		569	500.0	0	113.8	80	120	09/11/201
Cadmium		1.0		48.8	50.00	0	97.7	80	120	09/11/201
Chromium		1.0		203	200.0	0	101.6	80	120	09/11/201
Cobalt		1.0		513	500.0	0	102.7	80	120	09/11/201
Lead		1.0		514	500.0	0	102.9	80	120	09/11/201
Lithium		1.0		514	500.0	0	102.7	80	120	09/11/201
Molybdenum		1.0		491	500.0	0	98.2	80	120	09/11/201
Selenium		1.0		518	500.0	0	103.6	80	120	09/11/201
Thallium		1.0		238	250.0	0	95.1	80	120	09/11/201

Batch 133980 SampTyp SampID: 17081821-007BMS	e: MS	Units µg/L							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony	1.0		485	500.0	1.257	96.8	75	125	09/11/2017
Arsenic	1.0		556	500.0	38.14	103.5	75	125	09/11/2017
Barium	1.0		2080	2000	97.21	99.0	75	125	09/11/2017
Beryllium	1.0		52.5	50.00	0.8463	103.3	75	125	09/11/2017
Boron	25.0	S	29800	500.0	28580	241.2	75	125	09/11/2017
Cadmium	1.0		49.2	50.00	1.346	95.7	75	125	09/11/2017
Chromium	1.0		204	200.0	8.319	97.8	75	125	09/11/2017
Cobalt	1.0		494	500.0	2.264	98.4	75	125	09/11/2017
Lead	1.0		520	500.0	15.27	101.0	75	125	09/12/2017
Lithium	1.0		595	500.0	90.27	101.0	75	125	09/11/2017
Molybdenum	1.0		794	500.0	299.0	99.1	75	125	09/11/2017
Selenium	1.0		494	500.0	7.005	97.4	75	125	09/11/2017
Thallium	1.0		241	250.0	0.5254	96.2	75	125	09/11/2017

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Work Order: 17081821

Batch 133980 Sa	ampType:	MSD		Units µg/L					RPD	Limit 20	
SampID: 17081821-007	7BMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Antimony			1.0	-		500.0	1.257	96.2	485.5	0.64	09/11/2017
Arsenic			1.0		544	500.0	38.14	101.1	555.9	2.22	09/11/201
Barium			1.0		2060	2000	97.21	98.0	2077	0.94	09/11/201
Beryllium			1.0		51.5	50.00	0.8463	101.4	52.50	1.87	09/11/201
Boron			25.0	S	28300	500.0	28580	-54.8	29790	5.09	09/11/201
Cadmium			1.0		48.8	50.00	1.346	94.9	49.20	0.82	09/11/201
Chromium			1.0		202	200.0	8.319	96.7	204.0	1.16	09/11/201
Cobalt			1.0		487	500.0	2.264	97.0	494.1	1.37	09/11/2017
Lead			1.0		521	500.0	15.27	101.1	520.4	0.06	09/12/201
Lithium			1.0		584	500.0	90.27	98.7	595.1	1.93	09/11/201
Molybdenum			1.0		777	500.0	299.0	95.5	794.3	2.24	09/11/201
Selenium			1.0		485	500.0	7.005	95.7	494.2	1.80	09/11/201
Thallium			1.0		241	250.0	0.5254	96.1	241.0	0.12	09/11/201
SW-846 7470A (TOTA	AL)										
Batch 133984 Sa SampID: MBLK-133984	ampType: 1	MBLK		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20		< 0.20	0.2000	0	0	-100	100	09/11/201
Batch 133984 Sa SampID: LCS-133984	ampType:	LCS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20	Q 0.002		5.000	0	106.3	85	115	09/11/201
Batch 133984 Sa SampID: 17081821-001	ampType:	MS		Units µg/L							Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20	V		5.000	0	88.7	75	125	09/11/201
	ampType:	MSD		Units µg/L					RPD	Limit 15	
SampID: 17081821-001	IBMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Mercury			0.20		4.36	5.000	0	87.2	4.435	1.66	09/11/201

NPDES/CWA TCN interferences checked/treated in the field?

Receiving Check List

http://www.teklabinc.com/

Work Order: 17081821 Client: Natural Resource Technology, Inc. Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 22-Sep-17 Carrier: Tim Mathis Received By: AMD Marin L. Darling II Reviewed by: Completed by: Moon Dillalle On: On: 08-Sep-17 08-Sep-17 Amber M. Dilallo Marvin L. Darling Extra pages included 16 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No 🗔 Not Present Temp °C 1.02 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice **~** No L Chain of custody present? Yes **~** Chain of custody signed when relinquished and received? Yes No L **~** Chain of custody agrees with sample labels? No 🗀 Yes **~** Samples in proper container/bottle? Yes No 🗀 **V** Sample containers intact? Yes No Sufficient sample volume for indicated test? **~** No Yes **✓** No 🗌 All samples received within holding time? Yes NA \square Field < Lab \square Reported field parameters measured: No 🗌 Yes 🗹 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Water - at least one vial per sample has zero headspace? Yes 🗌 No 🗀 No VOA vials 🗸 No TOX containers Water - TOX containers have zero headspace? Yes No 🗌 Yes 🗹 No 🗌 Water - pH acceptable upon receipt?

Yes

Any No responses must be detailed below or on the COC.

No 🗀

NA 🗸

CHAIN OF CUSTODY

οĘ

pg.

Total Metals × × × × × × × Total Metals: ICP/MS 6020A Sb As Ba Be B Cd Cr Co Pb Li Mo Se Ti, ICP 6010 Ca Mg K Na, and Hg 7470A. TDS SM 2540C × × × × × × × Sulfate 9036 × × × × × × × TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005 Fluoride 9214 Date/Time REQUESTED × × × × × × FOR LAB USE ONLY LPZ-17: Depth to Leachate only, analyze as Alternate sampling point if LPZ-5 is dry. Field Turbidity SM × × × × × 2130-B Field Temperature × × × × × × SM 2550 1,02 Field pH SM 4500 × × × × INDICATE ANALYSIS Field ORP SM 2580 × × × × × В Field Leachate × × × × × × × × NO ICE Elevations Field DO SM 4500-O × × × × × × Field Conductivity × × × × × SM 2510-B BLUE ICE Chloride 9251 × × × × × × × X-FELD Alkalinity, Carb (as × × × × × × × CaCO3) Received By Alkalinity, Bicarb (as × × × × × × × CaCO3) Alkalinity Total Samples on: 🕱 ICE × × × × × × × Client Comments Lab Notes: 米、 Preserved inু MATRIX Leachate × × × × × × × × × ŝ # and Type of Containers × Are there any required reporting limits to be met on the requested analysis? If yes, please provide Sample Collector's Name (414) 837-3614 ☐ Yes 1310 Date/Time Are these samples known to be involved in litigation? If yes, a surcharge will apply HNO3 3 UNP 0 0 Phone: 9.7:17 1500 9-21-7-15-45 135 1336 555 348 **Fax**: Billing Instructions Date/Time Sampled 1315 1525 180 Natural Resource Technology, Inc. 4.9.6 2422 East Washington Street Are these samples known to be hazardous? Bloomington, IL 61704 Sample Identification steve.wiskes@obg.com Project Name/Number 3 Day (50% Surcharge) 1-2 Day (100% Surcharge) ⊡ Yes Hennepin Pond 1 & 2 Additional Testing Relinguished By Results Requested Steve Wiskes limits in the comment section. LPZ-5* LPZ-1 * LPZ-3 🗶 Field Blank LPZ-17 4 DUP LPZ-13 LPZ-15 City / State / Zip 500 TOS/1891: Lab Use Only 8 8 80 Address: Contact: E-Mail: X Standard Client: Other

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions.

38544

BottleOrder:

BORING LOGS AND WELL CONSTRUCTION INFORMATION

Leachate Well Construction Details West Ash Ponds 1 and 3 Hennepin Power Station

Monitoring Well:	TOP to TOC (ft)	TOP to GS (ft)	Bottom of Well to TOC (ft)	ELEV _{GS}	ELEV _{BOT}	ELEV _{TOP}	ELEV _{TOC}
LPZ-1	0.05	3	14.4	454.9	443.5	457.9	457.9
LPZ-3	0.0625	4.25	14.35	460.2	450.0	464.5	464.4
LPZ-5	0.05	3	10.46	463.1	455.6	466.1	466.0
LPZ-13	0.05	2.8	14.25	455.3	443.8	458.1	458.1
LPZ-15	0.05	3	15.3	460.8	448.5	463.8	463.8
LPZ-17	0.05	3	21.1	460.9	442.8	463.9	463.9

Notes:

GS Ground Surface
BOT Bottom of Well
TOC Top of Well Casing
TOP Top of Protective Pipe

GW Ground Water

Civil & Environmental Consultants, Inc. 555 Butterfield Road, Suite 300 Lombard, Illinois 60148 Telephone: 630-963-6026

BORING NUMBER B1/LPZ-1

PAGE 1 OF 1

		JMBER <u>164-478</u>						in Statio					
DATE	STAR	TED 3/15/17 COMPLETED 3/15/17	GROUN	D ELEV	ATI	ON _	454.92	8 ft	BAC	KFILL	<u>Moni</u>	toring V	Vell MW-
DRILI	ING C	ONTRACTOR Holcomb Foundation Engineering, Co	_										
		ETHOD HSA with Auto Hammer						/ Elev 45					
CEC	REP _C	AC CHECKED BY MDJ						3.0 ft / El					
NOTE	S		<u>√</u> 24	4hrs AF	TER	RDRI	LLING	3.0 ft / E	Elev 451	1.9 ft			
					Щ	I	%	LS	-		▲ SP1	N VAI	LUE ▲
io	9,5			_=	🗄	ER). K	NE)	E E		20 4 PL	0 6 MC	0 <u>80</u> LL
Elevation (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		DEPTH (ft)	l l	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)		-	0 6	
Ш	p				MA	ž) (EC	δZ) လ			JCS (ts	
				0	S)	<u> </u>	B	ш.			2 3	
		ASH: Gray SILT - FLY ASH, moist to wet, very loose, (ASH)											
	₩	$ar{ar{ u}}$		ļ -						-			
					\mathbb{N}	00		1010					
· -	\bowtie			-	X	SS 1	0	1-0-1-0	NP .	<u></u>			
		▼			$/ \setminus$								
		*			$\backslash /$	0		0.00		1			
	+				Į X	SS 2A	50	0-0-2 (2)	NP	 			
					(4			
450	₩			5	$\ \cdot\ $	SS	50	4-0-0	NP 4	\vdash	:		
						2B	50	(0)	INF 4	Ī			
		% Gravel ~ 0.1% % Sand ~ 9.1%		-	()					1			
		% Silt ~ 85.3%			V	SS	50	0-0-0-0	ND				
		% Clay ~ 5.4%]	3	50	(0)	NP 4	Î			
		ASH: Gray and brown SANDY SILT - BOTTOM ASH, moist t	o wet, , -	‡ -	$\langle \cdot \rangle$								
		\ \text{very loose, (ASH)} \ ASH: Gray SILT - FLY ASH, moist to wet, very loose, (ASH)	. _ _ <i>j</i>		\bigvee	SS	50	0-0-0	ND				
		ASH. Gray SILT - FLY ASH, Moist to wet, very loose, (ASH)		-	$ $ \	4A	50	(0)	NP 4	Î	:	:	
445				10	(1	:		
				10	1	SS 4B	50	0-0-0	NP 4		<u>:</u>		
	\bowtie				$/ \setminus$	4D		(0)		_\	:	:	
		Black SILTY CLAY, moist, medium stiff, (CL)			$\backslash /$]\	:	:	
		- , , , , , , , , , , , , , , , , , , ,		ļ -	Į V	SS	100	2-3-3-3	1.0 P		:	:	
					/	5		(6)					
-	/////	End of boring at 13.0 feet.		+ -	-					1			
											:		
											:		
											:		
											:		
											:		
											:		
											:		
											:	:	
											:	: :	:

GEOTECH-MDJ 164-478 WEST POND BORINGS.GPJ GEOTECHDATA.GDT 4/6/17

Civil & Environmental Consultants, Inc. 555 Butterfield Road, Suite 300 Lombard, Illinois 60148 Telephone: 630-963-6026

BORING NUMBER B3/LPZ-3

PAGE 1 OF 1

CLIEN	T _Dy	negy Inc Hennepin S	Station	PROJEC	T NAMI	E <u>Old \</u>	Vest As	h Pond S	System:	Data (Gap An	alysis	
PROJ	ECT N	UMBER <u>164-478</u>		PROJEC	T LOCA	ATION _	Hennep	in Statio	n, Henne	epin, II	linois		
DATE	STAR	TED 3/16/17	COMPLETED 3/16/17	GROUN	D ELEV	ATION	460.19	ft	BACI	KFILL	Monit	oring W	ell MW-3
DRILL	ING C	ONTRACTOR Holco	mb Foundation Engineering, Co	GROUN	D WATE	R LEVE	ELS:						
DRILL	ING M	IETHOD HSA with A	uto Hammer	abla w	HILE DE	RILLING	3.0 ft	/ Elev 45	7.2 ft				
CEC F	REP _	CAC	CHECKED BY MDJ	A.	T END C	F DRIL	LING						
NOTE	s			<u>V</u> 24	lhrs AF	TERDRI	LLING	10.7 ft /	Elev 44	9.5 ft			
						111	\o	တ			▲ SPT	N VALI	JE ▲
п	≌				_	SAMPLE TYPE NUMBER	۲۲ %)	BLOW COUNTS (N VALUE)	PEN.	l .	20 4	0 60	80
Elevation (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		DEPTH (ft)	LET	N N N N N N N N N N N N N N N N N N N	COI	ET (PL I	MC	_LL —I
Ele	GR L				ä	M N	RECOVERY (RQD)	N N N	POCKET (tsf)	2	20 4		
					0	8		BL	A		⊔∪ 1 2	CS (tsf)	⊔ 4
460_		ASH: Dark gray S	ANDY SILT - BOTTOM ASH, trace gravel,	moist									
	\ggg	to wet, loose to de	ense, (ASH)									:	
	XXX					$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $:	
	XXX				-		100	2-3-3-3 (6)	NP				
	\ggg					/ .		(0)		\		i	
	XXX	<u>¥</u>			-							:	
	XXX					SS 2A	100	3-7-11 (18)	NP			i	
	\ggg							(10)				i	
455	XXX				5	V ss		9-10-11					
	XXX					X 33 2B	100	(21)	NP	,	<u>*</u>	i	
	\ggg					$\langle \cdot \rangle$				/		:	
	>>>					$\left \right $		2 2 4 7		/		i	
	XXX				-		100	3-3-4-7 (7)	NP	–		i	
	\ggg					/ V						:	
	\ggg				_					,	<u>\</u>	:	:
	XXX				_	SS 4A	93	2-8-20 (28)	NP)	:	
	\ggg					\longrightarrow		` '				i	
450	\ggg				10	V ss	00	14-13-	NID			<u>:</u>	<u>:</u>
	XXX	ASH: Dark gray S	ILT - FLY ASH, wet, loose, (ASH)			∆ 4B	93	10 (23)	NP	,	7		
	\ggg				_	()			NP	/			:
		Black SILTY CLA	Y, moist, stiff, (CL)			$\left \right \right _{SS}$		0-1-4-4				:	
							85	0-1-4-4 (5)		_		i	
					_	/ \			2.5 P			:	
			End of boring at 13.0 feet.									:	
												i	:
												:	
												i	
												:	
													:
												:	:
													:
													:
													:
												:	:

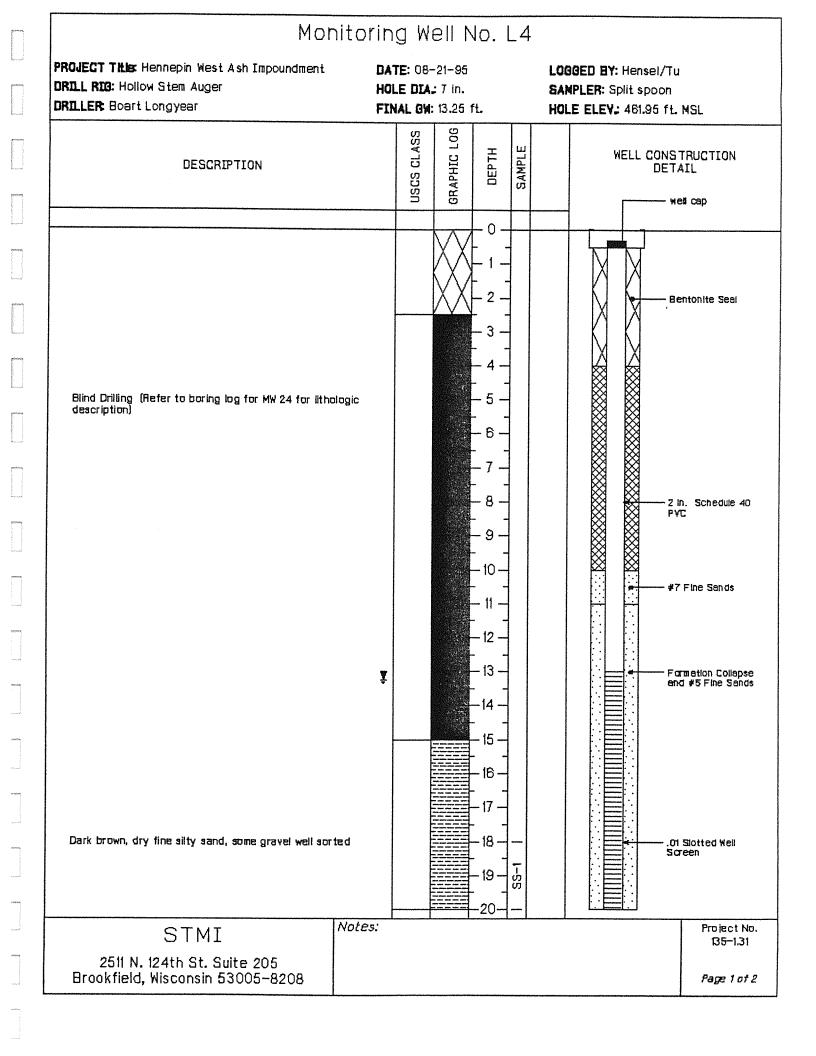
Civil & E 555 But Lombard

Civil & Environmental Consultants, Inc. 555 Butterfield Road, Suite 300 Lombard, Illinois 60148 Telephone: 630-963-6026

BORING NUMBER B17/LPZ-17

PAGE 1 OF 2

		ynegy Inc Hennepin Station IUMBER _164-478						_	Data Ga epin, Illin	p Analysis	
		RTED 3/14/17 COMPLETED 3/14/17									Well MW-17
		CONTRACTOR Holcomb Foundation Engineering, Co		ID WATE				_			
DRILI	ING N	METHOD CME Continuous Sampler	_ <u></u>	VHILE DI	RILLING	3 8.0 ft	/ Elev 4	52.9 ft			
CEC	REP _	CAC CHECKED BY MDJ		T END (OF DRIL	LING _					
NOTE	s			8hrs AF	TERDR	ILLING	13.0 ft	Elev 44	7.9 ft		
							S		_	SPT N VA	LUE 🛦
Ę	ಲ			_	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	20	40 6	80 80
Elevation (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		DEPTH (ft)	LET	VEF (QD)	COL	(tsf)	P	•	LL ——
Е	9. 1			🛱	A M S	S	8 S S	Ö	20_	40 €	
				0	Ś		В	۵	1		3 4
		ASH: Dark gray SILTY SAND - BOTTOM ASH, trace grav medium dense to dense, (ASH)	el, moist,							:	
460	\longrightarrow	medium dense to dense, (ASH)		-	1 /						
					\ /						
-	₩			-	{						
					SS 1	54		NP			
-				-	1/\						
	\bowtie				/ \						
					/ N						
	\bowtie			5			_				
455					N /						
455				-	11 /1						
					\/						
				-	∫						
		V		L .	2	72		NP			
		ASH: Gray SILT - FLY ASH, wet, (ASH)			/\						
-	\otimes			-	IJ \					:	
		ASH: Dark gray SILTY SAND - BOTTOM ASH, trace grav			/ /						
-		to wet, (ASH)	ei, moisi	10			1			<u>:</u>	
450					N /						
				-	1\ /						
	\bowtie]//						
					Ss	84		NP			
	\bowtie	ASH: Gray SILT - FLY ASH, wet, (ASH)		-							
					/\						
				-	∥						
				15	/ /						
										:	
445	\bowtie			L _	1 /						
					\ /						
				-	$\{\bigvee_{i}\}_{i=1}^{n}$						
					SS 	58		NP		:	
-				-	//						
	XXX	Brown SAND, wet, (SP)			/ \				:		
		% Gravel ~ 3.2% % Sand ~ 79.2%]						
_		% Silt ~ 14.7%		20	/ /				:		<u> </u>



Civil & Environmental Consultants, Inc. 555 Butterfield Road, Suite 300 Lombard, Illinois 60148 Telephone: 630-963-6026

BORING NUMBER B17/LPZ-17

PAGE 2 OF 2

	MBER 164-478	PROJECT	LOCA	ATION _	Hennepi	n Statio	<u>n, Henne</u>	epin, Illinois		
Elevation (ft) GRAPHIC LOG	MATERIAL DESCRIPTION		DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	20 PL 20 -	T N VAI 40 6 MC 40 6 UCS (ts	0 8 LL 1 0 8
	% Clay ~ 2.9% End of boring at 20.0 feet.									

Monito	ring	We	ell N	lo. I	_4			
PROJECT Title: Hennepin West Ash Impoundment ORILL RIG: Hollow Stem Auger ORILLER: Boart Longyear	DATE: HOLE FINAL	DIA;	7 in.	·t.		SAMPLER: S	: Hensel/Tu Aplit spoon : 461.95 ft. 1	MSL
DESCRIPTION		USGS GLASS	GRAPHIC LOG	ОЕРТН	SAMPLE		WELL CONST DETA	RUCTION IL
				-20-				
Blind Drilling (Refer to boring log for MW 24 for lithologic description)				- 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 29 - 29 - 29 - 29 - 29 - 29			Se	diment Trap
				-30- -31- -32- -33- -34- -35- -36-				
				-37- - 38- - 39- - 40-				
STMI 2511 N. 124th St. Suite 205 Brookfield, Wisconsin 53005-8208	es:							Project No. 135–1,31 Page 2 of 2

746 			. J	ОВ	NO. 02-1255	***************************************									
	:	SAMP	LE	П	DESCRIPTION OF MATERIALS		ξ			near St	_	th, t			7
(E)				# X	(Color Modifier MATERIAL, Classification)	BLOWS (per 6 jn)	DRY UNIT WEIGHT (pc!)	SVA 0	1/2	QP/:		!÷ ,		1/20 21/	/2
БЕРТН (II)	NUMBER	INTERVAL AND TYPE	ADVANCED /	REMARK	Soil Classification SystemUnified	,	T WEI	Pl +	-	١	MC			LL X	
DE	NUF	NTE	OVAI OVE	SEE A	•		N S	0		<u> </u>	50	<u> </u>		100	١٩
			AEC	SE	Surface Elevation 460.61	•	DRY	0		lock Qu	50	esi	gnati	on 10	٥
7	1	AS			Brown Sandy CLAY w/Gravel, CL										
					Dark Gray FLYASH w/Bottom	·			-		<u> </u>	<u> </u>			-
- 5 -	2	٠,	18/16		Ash, ML	3-4-5	1	Щ			<u> </u>				Ц
	2	33	10/10				1			++-	+	<u> </u>		1	1
												i			
						2 5 7	-				+	 	_	-	
-10-	3	SS	18/18		·	2-5-6	-				İ			Ì	
											+			-	-
-		,									士				
-15-	4	55	18/18			1-2-3					<u></u>]	_	_	$\frac{1}{1}$
			. 5, . 5		Dark Gray Silty CLAY, CL					+	-		+		}
ANK .											 	i		_]
		<u>.</u>				1-1-2	\dashv			++	+	1	\dashv	+	1
- 20 -	5	SS	18/9		•	<u> </u>	-				<u> </u>				Ţ
	-									+	+			_	1
							_				丄				1
- 25 -	6	SS	18/18			WH-2-2		-			+	-		_	+
											立	İ			1
	1							1 -	\vdash		+	1		+	$\left\{ \right.$
-	-	<u> </u>				WH-2-3	1				\perp	<u> </u>		\top	1
- 30-	7	SS	18/16				-	П							1
-	1					·	ŀ					İ			1
<u>. L.</u>	1				Dark Gray CLAY w/Silt Trace Sand, OH		_				_	1			-
- 35-	8	SS	18/18		Janu, on	WH-1-2	4	#	++	-	•				1
DRIL	LIN	G ME	THOD_		11ow Auger	,f.,	GR	OUN	DW	ATER	LE	VΕ	LS		
DAT	E DF	HLLE	ס	12	/10, 13/82	•	66	Enco	unter	red at		. 1	<u>4</u> c	Fe	et ص
		BY.			berts xeiner			moun ays	afte	r comp	pietic	n (5.0	_ Fe	et
		ETER			S :					r com					

BORING .

Hydrogeologic Study

Hennepin Power Plant

NOTE: Refer to the attached GENERAL NOTES and NOTATION USED ON RECORDS OF SUBSURFACE EXPLORATION for abbreviations, explanations, and qualifications relative to this log.

necu	ND OF SUBSURFACE E.	APLUNATION
PROJECT	Hydrogeologic Study Hennepin Power Plant	BORING W-4 2
JOB NO	82-1293	

	5	SAMP	LE		DESCRIPTION OF MATERIALS		(pcf)	Shear Strength, tsf
(E)	~	_ w	(lu)	HK#	(Color Modifier MATERIAL Classification)	BLOWS (per 6 in)	DRY UNIT WEIGHT (pcf)	0 1/2 1 11/2 2 21/2
DEPTH (11)	NUMBER	INTERVAL AND TYPE	ADVANCED / RECOVERED (In)	SEE REMARK	Soil Classification System Unified		IT WE	PL NMC LL +
ō	N	AND	COV	SEE F	Surface Elevation460.6	·•	N ∪Y	Rock Quality Designation
			· H		Odified Elevation		ā	50 100
					Dark Gray CLAY w/Silt Trace			
			•		Sand, OH			
-40-		SS	18/18			WH-WH-2		
			10/10					
- 45-	10	SS	18/18			WH-2-1		
					•			
		<u> </u>	_				\blacksquare	
- 50	11	SS	18/12		Dark Gray Fine SAND w/Clay, SC	WH-3-8	-	
	1				bark aray rine sand wrotay, so			
	1							
- 55-	12	SS	18/4	1		1-4-7		
-	-							
	1				Dark Gray Gravelly Fine SAND			
-	-				Trace Silt, SP-SM	8-15-5	-	
-60	13	55	18/18			<u></u>	-	
<u> </u>	-					,		
	1		ľ		Gray GRAVEL w/Sand Trace Clay,		_	
-65	14	SS	18/16		, GP-GC TOB	14-17-22	-	
	}		1 .		Remarks:			
	1				1. Water level approximately 6.0' appears same as	′		
70	-				river level.			
	1		<u> </u>		Tow Auger	<u> </u>	<u> </u>	OUNDWATER LEVELS
		G ME	טטחו		Tow Auger /10, 13/82		G	Encountered at Feet
		BY.	<u> </u>	Rol	perts			Hours after completion 40 Feet
		BY.		Ma: Ye:	keiner		ع <u>ـ</u> 2 ـــــ	ays after completion 6.7 Feet after completion Feet
PIEZ	LOM	ETER		163	3			EVEL OF EVEL OF ATION

NOTE: Refer to the attached GENERAL NOTES and NOTATION USED ON RECORDS OF SUBSURFACE EXPLORATION for abbreviations, explanations, and qualifications relative to this log.

APPENDIX C SUPPORTING GROUNDWATER ANALYTICAL DATA

APPENDIX C. SUPPORTING GROUNDWATER ANALYTICAL DATA 35 I.A.C. § 845: ALTERNATIVE SOURCE DEMONSTRATION HENNEPIN POWER PLANT

OLD WEST ASH POND

HENNEPIN, IL

Well ID	Well Type	Date	Parameter	Result	Unit
22	Compliance	12/10/2015	Boron, total	6.01	mg/L
22	Compliance	03/09/2016	Boron, total	5.85	mg/L
22	Compliance	06/07/2016	Boron, total	6.28	mg/L
22	Compliance	09/15/2016	Boron, total	5.75	mg/L
22	Compliance	12/07/2016	Boron, total	6.72	mg/L
22	Compliance	02/21/2017	Boron, total	5.47	mg/L
22	Compliance	04/25/2017	Boron, total	5.29	mg/L
22	Compliance	06/08/2017	Boron, total	4.99	mg/L
22	Compliance	06/13/2018	Boron, total	5.57	mg/L
22	Compliance	09/12/2018	Boron, total	4.66	mg/L
22	Compliance	12/12/2018	Boron, total	4.92	mg/L
22	Compliance	03/13/2019	Boron, total	5.75	mg/L
22	Compliance	06/19/2019	Boron, total	5.62	mg/L
22	Compliance	09/17/2019	Boron, total	5.37	mg/L
22	Compliance	12/11/2019	Boron, total	5.70	mg/L
22	Compliance	03/11/2020	Boron, total	5.20	mg/L
22	Compliance	06/03/2020	Boron, total	5.07	mg/L
22	Compliance	09/02/2020	Boron, total	4.72	mg/L
22	Compliance	12/09/2020	Boron, total	4.77	mg/L
22	Compliance	03/19/2021	Boron, total	4.89	mg/L
22	Compliance	06/23/2021	Boron, total	4.91	mg/L
22	Compliance	09/08/2021	Boron, total	4.39	mg/L
22	Compliance	12/08/2021	Boron, total	3.81	mg/L
22	Compliance	03/22/2022	Boron, total	4.84	mg/L
22	Compliance	06/07/2022	Boron, total	3.95	mg/L
22	Compliance	09/13/2022	Boron, total	3.42	mg/L
22	Compliance	12/27/2022	Boron, total	4.44	mg/L
22	Compliance	02/28/2023	Boron, total	4.51	mg/L
22	Compliance	05/31/2023	Boron, total	3.44	mg/L
22	Compliance	12/10/2015	Cadmium, total	0.00140	mg/L
22	Compliance	03/09/2016	Cadmium, total	0.00170	mg/L
22	Compliance	06/07/2016	Cadmium, total	0.00230	mg/L
22	Compliance	09/15/2016	Cadmium, total	0.00310	mg/L
22	Compliance	12/07/2016	Cadmium, total	0.00440	mg/L
22	Compliance	02/21/2017	Cadmium, total	0.00390	mg/L
22	Compliance	04/25/2017	Cadmium, total	0.00360	mg/L
22	Compliance	06/08/2017	Cadmium, total	0.00320	mg/L
22	Compliance	06/13/2018	Cadmium, total	0.00430	mg/L
22	Compliance	09/12/2018	Cadmium, total	0.00570	mg/L
22	Compliance	12/12/2018	Cadmium, total	0.00760	mg/L
22	Compliance	03/13/2019	Cadmium, total	0.00570	mg/L
22	Compliance	06/19/2019	Cadmium, total	0.00480	mg/L
22	Compliance	09/17/2019	Cadmium, total	0.00480	mg/L
22	Compliance	12/11/2019	Cadmium, total	0.00550	mg/L
22	Compliance	03/11/2020	Cadmium, total	0.00500	mg/L
22	Compliance	06/03/2020	Cadmium, total	0.00530	mg/L

APPENDIX C. SUPPORTING GROUNDWATER ANALYTICAL DATA 35 I.A.C. § 845: ALTERNATIVE SOURCE DEMONSTRATION HENNEPIN POWER PLANT

OLD WEST ASH POND HENNEPIN, IL

Well ID	Well Type	Date	Parameter	Result	Unit
22	Compliance	09/02/2020	Cadmium, total	0.00530	mg/L
22	Compliance	12/09/2020	Cadmium, total	0.00900	mg/L
22	Compliance	03/19/2021	Cadmium, total	0.00590	mg/L
22	Compliance	06/23/2021	Cadmium, total	0.00600	mg/L
22	Compliance	09/08/2021	Cadmium, total	0.00540	mg/L
22	Compliance	12/08/2021	Cadmium, total	0.00540	mg/L
22	Compliance	03/22/2022	Cadmium, total	0.00570	mg/L
22	Compliance	06/07/2022	Cadmium, total	0.00570	mg/L
22	Compliance	09/13/2022	Cadmium, total	0.00570	mg/L
22	Compliance	12/27/2022	Cadmium, total	0.00590	mg/L
22	Compliance	02/28/2023	Cadmium, total	0.00960	mg/L
22	Compliance	05/31/2023	Cadmium, total	0.00520	mg/L
22	Compliance	12/10/2015	Sulfate, total	221	mg/L
22	Compliance	03/09/2016	Sulfate, total	261	mg/L
22	Compliance	06/07/2016	Sulfate, total	255	mg/L
22	Compliance	09/15/2016	Sulfate, total	208	mg/L
22	Compliance	12/07/2016	Sulfate, total	204	mg/L
22	Compliance	02/21/2017	Sulfate, total	197	mg/L
22	Compliance	04/25/2017	Sulfate, total	213	mg/L
22	Compliance	06/08/2017	Sulfate, total	229	mg/L
22	Compliance	06/13/2018	Sulfate, total	219	mg/L
22	Compliance	09/12/2018	Sulfate, total	207	mg/L
22	Compliance	12/12/2018	Sulfate, total	181	mg/L
22	Compliance	03/13/2019	Sulfate, total	179	mg/L
22	Compliance	06/19/2019	Sulfate, total	249	mg/L
22	Compliance	09/17/2019	Sulfate, total	204	mg/L
22	Compliance	12/11/2019	Sulfate, total	187	mg/L
22	Compliance	03/11/2020	Sulfate, total	220	mg/L
22	Compliance	06/03/2020	Sulfate, total	214	mg/L
22	Compliance	09/02/2020	Sulfate, total	206	mg/L
22	Compliance	12/09/2020	Sulfate, total	201	mg/L
22	Compliance	03/19/2021	Sulfate, total	179	mg/L
22	Compliance	06/23/2021	Sulfate, total	168	mg/L
22	Compliance	09/08/2021	Sulfate, total	160	mg/L
22	Compliance	12/08/2021	Sulfate, total	146	mg/L
22	Compliance	03/22/2022	Sulfate, total	145	mg/L
22	Compliance	06/07/2022	Sulfate, total	134	mg/L
22	Compliance	09/13/2022	Sulfate, total	142	mg/L
22	Compliance	12/27/2022	Sulfate, total	141	mg/L
22	Compliance	02/28/2023	Sulfate, total	145	mg/L
22	Compliance	05/31/2023	Sulfate, total	123	mg/L

APPENDIX C.

SUPPORTING GROUNDWATER ANALYTICAL DATA
35 I.A.C. § 845: ALTERNATIVE SOURCE DEMONSTRATION
HENNEPIN POWER PLANT OLD WEST ASH POND HENNEPIN, IL

Notes: mg/L = milligrams per liter

APPENDIX D
TECHNICAL MEMORANDUM
EVALUATION OF CADMIUM SOURCES WITHIN AQUIFER
SOLIDS, HENNEPIN POWER PLANT - WEST ASH POND SYSTEM

TECHNICAL MEMORANDUM

Date: October 26, 2023

To: Brian Voelker, Dynegy Midwest Generation, LLC

Copies to: Stu Cravens and Phil Morris, Dynegy Midwest Generation, LLC

Eric Tlachac and Brian Hennings, Ramboll

From: Allison Kreinberg and Ryan Fimmen, PhD, Geosyntec Consultants

Subject: Evaluation of Cadmium Sources within Aquifer Solids

Hennepin Power Plant – West Ash Pond System

This document serves as an Appendix to the November 10, 2023, Alternative Source Demonstration (ASD) for the Hennepin (HEN) Power Plant West Ash Pond System (WAPS) (Site) for the Quarter 2 2023 sampling event completed to fulfill the requirements of Title 35 of the Illinois Administrative Code (IAC) § 845.650(e). A previous ASD prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) in May 2023 concluded that an exceedance of cadmium above the groundwater protection standard (GWPS) at downgradient monitoring well #22 could be attributed to sources other than the WAPS and was potentially related to changing groundwater pH (Ramboll 2023). Geosyntec Consultants, Inc. (Geosyntec) has completed a review of geochemical and site conditions at the Site to evaluate the influence of the uppermost aquifer solid-phase mineralogy and geochemistry on groundwater composition. Using additional evidence from laboratory analyses and geochemical modeling, this technical memorandum demonstrates that naturally occurring cadmium associated with aquifer solids throughout the Site is a source of elevated cadmium in Site groundwater.

SITE CONDITIONS

Site geology consists primarily of unlithified alluvial and glacial deposits overlying shale bedrock. These alluvial deposits consist of the fine-grained Cahokia Alluvium, and the gravelly, glacially deposited Henry Formation. The Cahokia Alluvium deposits at the Site extend to depths of less than 20 feet and are composed of sandy silts and clays that are interbedded with sand and gravel (OBG 2017). Henry Formation deposits at the Site underlie the Cahokia Alluvium. These deposits

Hennepin WAPS Cadmium Evaluation October 26, 2023 Page 2

extend in depth to the uppermost bedrock (to a maximum of 130 feet dependent upon location at the Site) and are composed of coarse-grained materials that include gravel, coarse sands, and cobbles. The Pennsylvanian-age bedrock consists of interbedded layers of shale with thin limestone, sandstone, and coal beds.

The Henry Formation and alluvium together comprise the Uppermost Aquifer (UA) at the WAPS and extend from the water table to the bedrock. The UA is unconfined and extends from the water table to the bedrock. Additional information regarding site hydrogeology and stratigraphy is provided in the ASD prepared by Ramboll.

AQUIFER SOLIDS EVALUATION

The previous ASD report for cadmium at well #22 completed by Ramboll (2023) identified naturally occurring cadmium within soil samples collected from soil borings near the Hennepin East Ash Pond System. Additional aquifer solids samples were collected near the WAPS by Geosyntec and analyzed to evaluate whether subsurface material in the vicinity of the WAPS may account for reported cadmium concentrations in groundwater. The analytical results of the aquifer solids demonstrate that the aqueous groundwater cadmium concentrations at monitoring well #22 in excess of the GWPS are derived from the native mineralogy.

Samples were collected from soil borings advanced in March 2021 adjacent to background well #34 and compliance well #22¹. One sample was collected from the screened interval of monitoring well #34 (32–33 feet bgs) and two samples were collected from the screened interval of monitoring well #22 (26–27 feet bgs and 29–30 feet bgs). Well construction forms for both wells are provided in **Attachment 1**. Field observations of the sample lithologies (provided in Table 1) were generally consistent with the lithologies for the screened intervals of well #34 and well #22 provided in the boring logs (**Attachment 1**).

Samples were submitted for analysis of total cadmium, cadmium distribution within the aquifer solids using sequential extraction procedure (SEP), and mineralogy via X-ray diffraction (XRD). Results for total and SEP analyses of cadmium in these samples are presented in **Table 1**, and the analytical laboratory reports are provided as **Attachment 2**.

SEP is an analytical technique that uses progressively stronger reagents to solubilize metals from specific phases within the solid matrix and is used to infer associations between constituents and different classes of solids (Tessier et al. 1979). These classes of solids are identified based on their

¹ An aquifer solids sample was also collected from the screened interval of well #51 during this sampling event. Results of this sample are excluded from subsequent results tables and discussion to emphasize relevant findings. Analytical results of this sample are included in the Attachments section.

Hennepin WAPS Cadmium Evaluation October 26, 2023 Page 3

solubility under different reagents and include the exchangeable fraction, the carbonate-bound fraction, the iron/manganese oxide-bound fraction, the organic matter-bound fraction, and the residual fraction. To evaluate data quality in an SEP analysis, first the sum of individual extraction steps from the SEP was compared to the total cadmium concentration. The sum of the SEP is not expected to be exactly equal to the total metals analysis but should be generally consistent with the total metals result. The total cadmium concentrations ranged from 0.53 to 2.9 micrograms per gram of soil ($\mu g/g$). The summed concentrations of cadmium from the SEP analyses ranged from 0.45 to 2.6 $\mu g/g$. The results were generally consistent between the total metals analyses and the summed SEP steps, indicating good metals recovery and data quality.

These results indicate that cadmium is naturally present in both background and compliance well solid-phase samples at the Site. The highest cadmium concentrations were observed in the samples from monitoring well #22. The largest components of cadmium in all three samples were found to be associated with the weak-acid extractable fraction (including carbonates) and the reducing agent extractable fraction (including iron and manganese oxides) (**Table 1**). Smaller components of cadmium were found to be associated with the other fractions, although 69%–83% of cadmium from all three samples was associated with a combination of carbonates and iron/manganese oxides.

Mineralogical analyses were completed using XRD to evaluate the mineralogy of the aquifer solids. Mineralogy of the samples analyzed consists primarily of quartz, various carbonate minerals (dolomite, calcite, and ankerite), various feldspar minerals (albite and microcline), and muscovite (mica). Of the mineral groups identified as present within the aquifer solids via XRD, SEP testing quantified the largest component of cadmium was leached from the weak-acid extractable and reducing agent extractable fractions, which are often associated with carbonates and oxides, respectively (**Table 1**). Carbonate minerals were found in each sample analyzed at abundances of 18 to 25 weight percent (wt. %) (**Table 2**). Magnetite, an iron oxide mineral, was detected in every sample analyzed (**Table 2**). Based on the XRD results, these minerals are abundant in samples from both well #22 and well #34 of the WAPS, suggesting that these cadmium-associated minerals occur in the UA throughout the Site and constitute a natural source of cadmium. Mineralogy results are provided in **Table 2** and the laboratory analytical report is included as **Attachment 3**.

The association of cadmium with carbonate minerals, specifically calcite, is a well-studied phenomenon. Cadmium ions can readily substitute for calcium ions in the calcite crystal structure due to similarities in charge and ionic radii between the two ions (Lorens 1981, Tesoriero and Pankow 1996). This process is known to occur via initial sorption of aqueous cadmium ions to the hydrated surface layer of calcite crystals, which then become incorporated into the calcite crystal structure during new layer growth in a process known as co-precipitation (Papadopoulos and

Rowell 1988, Reeder 1996, Horner et al. 2011, Callagon et al. 2017). The primary control on calcite solubility in groundwater is pH, with calcite solubility increasing at lower pH.

Sorption of cadmium to iron oxide minerals is also well documented, as divalent transition metals such as cadmium are known to bind strongly to iron and manganese oxides (Cowan et al. 1991, Loganathan et al. 2012). Cadmium sorption to iron oxides is primarily a function of pH, aqueous cadmium concentrations, and aqueous concentrations of competitive divalent cations such as calcium and magnesium (Cowan et al. 1991).

Aquifer solids analyses completed for well #34 and well #22 show that aquifer solids are composed of approximately 18-25% carbonate minerals. SEP results indicate the dissolution of cadmium from aquifer solids with a weak acid, consistent with cadmium association with carbonate minerals. Therefore, cadmium co-precipitation with or dissolution from carbonate minerals would influence concentrations of aqueous cadmium. Dissolution of naturally occurring cadmium-bearing carbonates constitutes a potential alternative source of cadmium. SEP results also indicated that cadmium is associated with iron/manganese oxides such as magnetite, which was detected in the samples from both wells #34 and #22. Desorption of cadmium from magnetite constitutes an additional potential alternative source of cadmium in groundwater.

While it is possible that cadmium associated with the CCR could be mobilized, released, and then re-adsorbed onto iron oxides or accumulated in carbonate minerals within the aquifer downgradient of the unit, this is not likely at the WAPS because: 1.) cadmium is not detected or detected at very low-level concentrations (i.e., 0.0013 mg/L) in the porewater, and 2.) cadmium was identified in aquifer solids from adjacent to background well #34, which is unimpacted by the unit. These observations suggests that the cadmium is likely naturally occurring at the Site.

GEOCHEMICAL MODELING

The previous ASD report prepared by Ramboll (2023) for cadmium at well #22 noted a downward shift in pH values of groundwater at well #22 since approximately 2013 with a corresponding increase in cadmium concentrations (**Figure 1**). A decline in pH conditions may affect aqueous cadmium concentrations due to changes in cadmium speciation by destabilizing cadmium-substituted carbonate minerals in the UA. A decrease in pH could also result in mobilization of cadmium from the existing iron oxide mineral phases such as magnetite via desorption of cadmium from mineral surfaces and dissolution of these iron oxide minerals.

Geochemical equilibrium speciation modeling was used to evaluate the impact of pH changes on aqueous cadmium concentrations at well #22. Thermodynamic reaction pathway modeling was conducted using the React module of Geochemist's Workbench (GWB) geochemical modeling

software package (version 17.0.1). The purpose of the model is to show the relationship between pH and aqueous cadmium concentrations as a function of the dissolution of cadmium-bearing carbonates and the desorption of cadmium from iron oxides.

The initial aqueous component of the geochemical model was populated using the groundwater composition of the most recent sample collected at well #22 on May 31, 2023 (Table 3). The pH value of the aqueous component was not defined and was set as a sliding scale to test the hypothesis that pH changes may cause changes to aqueous cadmium concentrations. Solid-phase reactants were defined based on XRD results of the well #22 samples (Table 3). Magnetite was included in the system with an abundance of 0.5 wt. % to evaluate the influence of sorption and desorption of cadmium from the iron oxide fraction. To represent the cadmium-bearing carbonate phase, a cadmium-calcite source phase was included as a reactant at an abundance of 5.25 wt. % (averaged from calcite abundances of the two well #22 samples) to evaluate the impact that the dissolution of calcite with co-precipitated cadmium has on aqueous cadmium concentrations. This source phase was defined with a mineral formula of (Ca_{0.85}Cd_{0.15})CO₃, which was determined by calibrating the model output to the May 31, 2023, well #22 analytical results for aqueous cadmium and calcium. The calcite-otavite (cadmium carbonate) solid-solution series can occur in nature across all proportion ranges depending upon geochemical conditions. This can include either 100% calcium carbonate, 100% cadmium carbonate, or any proportion of calcium and cadmium carbonate in between these two end member compositions. The selected mineral formula contains a reasonable proportion of cadmium within the crystal structure to represent coprecipitation while still retaining the general calcite crystal structure and thermodynamic traits (Ma et al. 2022).

The WATEQ4F thermodynamic database developed by the United States Geological Survey was modified to include the cadmium-calcite source phase and was used in model calculations. Thermodynamic information for the cadmium-calcite source phase was populated using the experimentally derived solubility constants of the calcite-otavite solid-solution series from Ma et al. (2022). Sorption to iron oxides was incorporated into model calculations using the Dzombak and Morel (1990) two-layer surface complexation model, which is provided in GWB as sorption dataset FeOH.sdat. This sorption dataset was modified to include magnetite as an iron oxide mineral containing sorption sites. Iron minerals hematite, goethite, and Fe(OH)₃(s) were suppressed during model simulations due to their absence in XRD results. Pure (*i.e.*, non-substituted) calcite was suppressed in favor of using of the cadmium-calcite source phase in calculations. A porosity value of 20% was used for the UA, as indicated in the *Hydrogeologic Monitoring Plan* (OBG 2017).

The geochemical model was used to show predictions of cadmium and calcium concentrations over the pH range observed in groundwater at well #22 from 2013 to the present (**Figure 2**). Calcium concentrations are shown to illustrate the effects of dissolution of the cadmium-calcite

source phase on aqueous conditions. Generally, both calcium and cadmium concentrations are predicted to increase as pH decreases toward neutral. Aqueous concentrations of cadmium are predicted to increase with decreasing pH within the pH range of 8.2 standard units (SU) to approximately 7.2 SU due to dissolution of the cadmium-calcite source phase, which decreases from approximately 3.4 wt. % to 2.3 wt. % (Figure 3A). Around a pH value of 7.7 SU, the model predicts that desorption of cadmium from iron oxide minerals (magnetite) will begin to occur. As pH continues to decrease, aqueous concentrations of cadmium are predicted to increase due to the concurrent effects of the dissolution of the cadmium-calcite phase and desorption of cadmium from magnetite (Figure 3B).

The geochemical model was calibrated by adjusting the cadmium-calcium ratio of the source phase to align (as near as possible) with the predicted aqueous cadmium and calcium concentrations at a pH of 7.58 SU (pH measured at well #22 on May 31, 2023 used for the aqueous input) with reported values. At a pH of 7.58 SU, the model predicted aqueous cadmium and calcium concentrations of 0.0024 and 71.74 mg/L respectively, compared to reported well #22 concentrations of 0.0052 and 87.1 mg/L (**Figure 2**). These results indicate that the model output aligns closely with observed values and that the model predictions are reasonable when compared to previously reported cadmium substitution rates (Ma et. al 2022).

CONCLUSION

Naturally occurring cadmium associated with the minerals of the UA solids at the Site was identified as a source for cadmium in Site groundwater. Solid-phase samples collected from background well #34 and compliance well #22 contained cadmium, with the highest total cadmium concentrations observed in samples collected from the screened interval of the well #22. SEP analyses of the solid-phase samples determined that the majority of cadmium in the solid phase is associated with the carbonate and iron/manganese oxide fractions. XRD confirmed the presence of magnetite (an iron oxide mineral) in all samples analyzed and identified carbonate minerals that make up approximately 18-25% of the solid phase. These solid phase results verify the presence of naturally occurring cadmium within the UA and suggest dual mechanisms of cadmium mobilization that are strongly supported by literature: (1) the dissolution of calcite containing coprecipitated cadmium within the crystal structure, and (2) the desorption of cadmium from iron oxide mineral surfaces (such as magnetite).

These potential mechanisms of cadmium mobilization were evaluated using a thermodynamic reaction pathway model. Groundwater analytical data and mineralogy results were used as model inputs to assess the impact that shifts in pH values of groundwater at monitoring well #22 are predicted to have on aqueous cadmium concentrations. Model results were successfully calibrated to observed concentrations, and the model supports the conclusion that both mechanisms of

cadmium mobilization should occur within the pH range of groundwater observed at well #22 and may result in increases in aqueous cadmium concentrations as a function of observed decreases in pH of groundwater at the well.

The solid-phase assessment and geochemical modeling efforts support the determination that aqueous cadmium concentration increases at downgradient monitoring well #22 are related to naturally occurring mineral-water interactions within the UA and not a release from the WAPS.

REFERENCES

- Callagon, E.B.R., S.S. Lee, P.J. Eng, N. Laanait, N.C. Sturchio, K.L. Nagy, and P. Fenter. 2017. "Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates." *Geochimica et Cosmochimica Acta* 205(15):360-380.
- Cowan, C., J. M. Zachara, and C. T. Resch. 1991. "Cadmium adsorption on iron oxides in the presence of alkaline-earth elements." *Environmental Science Technologies* 25(3):437–446.
- Dzombak, D. A., and F. M. Morel. 1990. *Surface Complexation Modeling: Hydrous Ferric Oxide*. New York: Wiley-Interscience.
- Horner, T.J., R. E. M. Rickaby, and G. M. Henderson. 2011. "Isotopic fractionation of cadmium into calcite." *Earth and Planetary Science Letters* 312(1):243–253.
- Loganathan, P., S. Vigneswaran, J. Kandasamy, and R. Naidu. 2012. "Cadmium sorption and desorption in soils: a review." *Critical Reviews in Environmental Science and Technology* 42(5):489–533.
- Lorens, R. B. 1981. "Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rates." *Geochimica et Cosmochimica Acta* 45(4):553–561.
- Ma, C., F. Xu, Z. Zhu, H. Yang, P. Nong, Z. Kang, S. Tang, L. Zhang, and Y. Zhu. 2022. "Dissolution and solubility of the calcite-otavite solid solutions [(Ca_{1-x}Cd_x)CO₃] at 25 °C." *Minerals* 12(6):756.
- OBG. 2017. *Hydrogeologic Monitoring Plan Hennepin West Ash Pond System*. Hennepin Power Station, Hennepin, Illinois. October.
- Papadopoulos, P., and D. L. Rowell. 1988. "The reactions of cadmium with calcium carbonate surfaces." *European Journal of Soil Science* 39(1):23–36.

- Ramboll. 2023. Alternative Source Demonstration Old West Ash Pond (Pond No. 1 and Pond No. 3) and Old West Polishing Pond. Hennepin Power Plant, Hennepin, Illinois, CCR Unit 804. Ramboll Americas Engineering Solutions, Inc. May.
- Reeder, R. J. 1996. "Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth." *Geochimica et Cosmochimica Acta* 60(9):1543–1552.
- Tesoriero, A. J., and J. F. Pankow. 1996. "Solid solution partitioning of Sr, Ba, and Cd to calcite." *Geochimica et Cosmochimica Acta* 60(6):1053–1063.
- Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. "Sequential extraction procedure for the speciation of particulate trace metals." *Analytical Chemistry* 5(7):844–851.

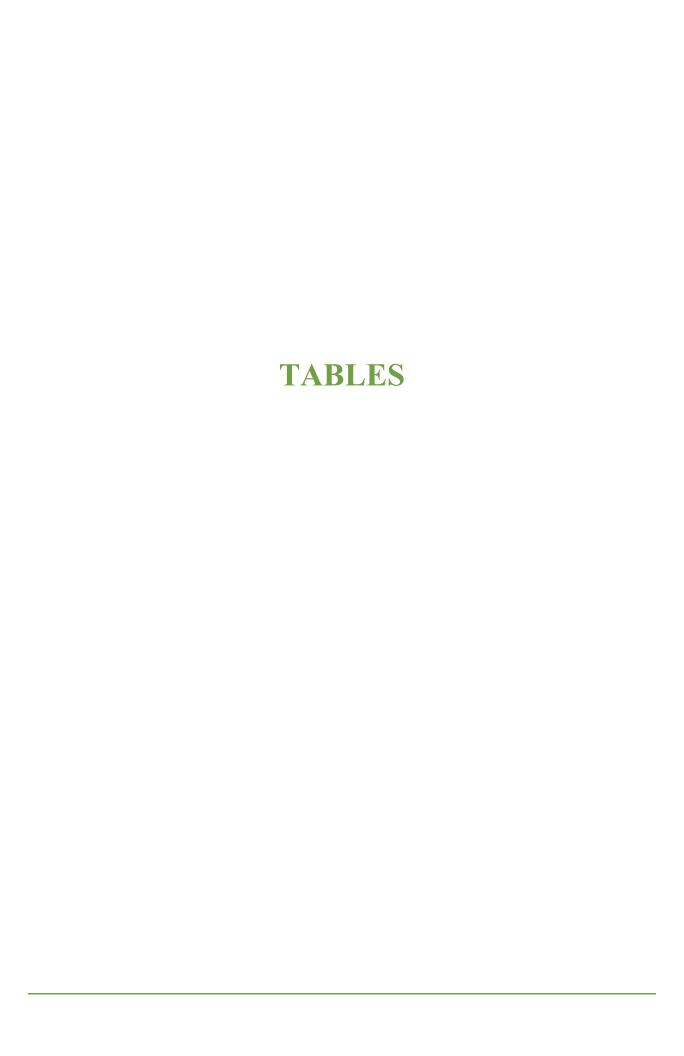


Table 1 - Cadmium SEP Results Summary Hennepin Power Plant

	Well ID		SB-2	22	SB-2	22	SB-34	
	Depth (ft)	(26-27)		(29-3	0)	(32-33)	
	Location	l	Downgra	adient	Downgra	adient	Background	
	Total Cadm	ium	0.76	5	2.9		0.53	3
SEP	SEP Reagent			SEI	P Results			
Fraction	SLI Reagent		Concentration	% of Total	Concentration	% of Total	Concentration	% of Total
1	Deionized Water	Water Soluble Fraction	< 0.02		0.04	3%	< 0.02	
2	MgCl ₂	Exchangeable Metals Fraction	<0.02		0.24	9%	<0.02	
3	Sodium acetate, acetic acid	Metals Bound to Carbonates Fraction	0.37	56%	0.69	27%	0.12	27%
4	Hydroxylamine HCl and acetic acid	Metals Bound to Fe/Mn Oxides Fraction	0.16	24%	1.1	42%	0.25	56%
5	HNO ₃ , H ₂ O ₂ , and ammonium acetate	Bound to Organic Material Fraction	0.03	5%	0.25	10%	0.03	7%
6	6 HNO ₃ , HCl, and HF Residual Metals Fraction			15%	0.23	9%	0.05	11%
	SEP Total			100%	2.6	100%	0.45	100%

Notes:

SEP - sequential extraction procedure

All results shown in microgram of cadmium per gram of soil ($\mu g/g$).

Non-detect values are shown as less than the detection limit.

The cadmium fraction associated with each SEP phase is shown.

% of total cadmium is calculated from the sum of the SEP fractions.

Table 2 - Summary of X-Ray Diffraction Analysis Hennepin Power Plant

	Well ID		MW-22	MW-22	MW-34
	Depth (ft bgs)		(26-27)	(29-30)	(32-33)
	Location		Downgradient	Downgradient	Upgradient
	Boring Log Description		Fine sand	Gravel with sand and trace clay	Fine-medium sand
Mineral/Compound	Formula	Mineral Type	(wt %)	(wt %)	(wt %)
Quartz	SiO_2	Silicate	57.0	54.5	53.0
Dolomite	$CaMg(CO_3)_2$	Carbonate	14.4	11.4	2.6
Albite	NaAlSi ₃ O ₈	Feldspar	7.3	9.8	7.1
Calcite	CaCO ₃	Carbonate	7.2	3.3	11.1
Muscovite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	Mica	2.1	7.4	7.9
Microcline	KAlSi ₃ O ₈	Feldspar	5.2	5.2	5.1
Ankerite	Ca(Fe,Mg)(CO ₃) ₂	Carbonate	2.9	2.8	6.0
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈	Clay	1.9	2.7	3.4
Kaolinite	$Al_2Si_2O_5(OH)_4$	Clay	0.6	2.5	3.4
Pyrite	FeS ₂	Sulfide	-	-	0.2
Magnetite	Fe ₃ O ₄	Oxide	0.5	0.4	0.4
Actinolite	Ca ₂ (Mg,Fe) ₃ Si ₈ O ₂₂ (OH) ₂	Amphibole	0.8	-	-
	Carbonate Total	•	25	18	20

Notes:

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined. Sample depths are shown in feet below ground surface (ft bgs).

wt %: percentage by weight

Table 3 - Summary of Geochemical Model Inputs Geosyntec Consultants, Inc. Hennepin Power Plant

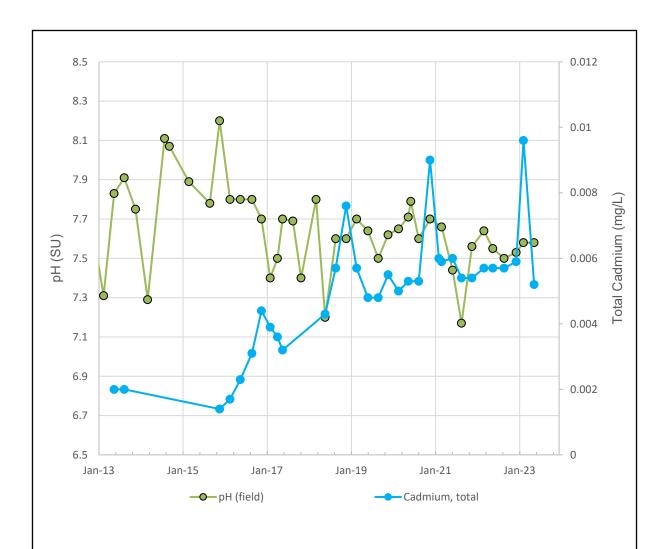
		Aqueous Phase	
Parameter	Unit	Input Value	Source
Calcium	mg/L	87.1	May 31, 2023 sampling event
Cadmium	mg/L	0.00520	May 31, 2023 sampling event
Chloride	mg/L	97.0	May 31, 2023 sampling event
Iron	mg/L	0.0200	May 31, 2023 sampling event
Magnesium	mg/L	32.0	May 31, 2023 sampling event
Manganese	mg/L	0.0511	May 31, 2023 sampling event
Potassium	mg/L	11.4	May 31, 2023 sampling event
Sodium	mg/L	55.8	May 31, 2023 sampling event
Sulfate	mg/L	123	May 31, 2023 sampling event
Total Alkalinity	mg/L	243	May 31, 2023 sampling event
Eh	V	0.249	May 31, 2023 sampling event
Temperature	°C	15.7	May 31, 2023 sampling event
рН	SU	6.5-9	Model variable
		Solid Phase	
Reactant	Unit	Input Value	Source
Magnetite	wt. %	0.5	March 2021 sample XRD
Cadmium-Calcite	. 0/	5.25	M 1 2021 1 VDD (1 1)
Source Phase ^{1,2}	wt. %	5.25	March 2021 sample XRD (calcite)
Porosity	%	20	OBG, 2017

Notes:

mg/L: milligrams per liter

V: volts

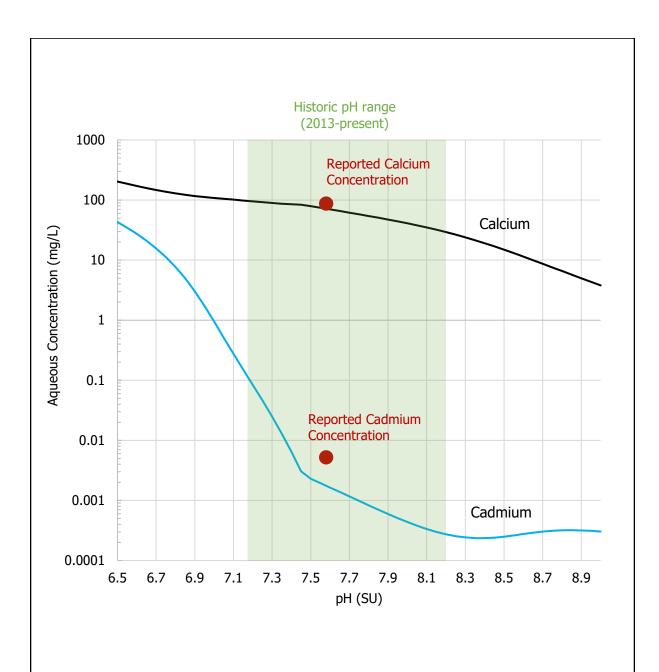
°C: degrees Celsius SU: standard units


wt. %: weight percentage

1. Mineral formula (Ca_{0.85}Cd_{0.25})CO₃

2: A log K value of -8.98 at 25 $^{\circ}\text{C},$ interpolated from experimental results of Ma et al.

(2022), was used for thermodynamic calculations


Notes: pH values are measured in the field during sampling events and are shown in standard units (SU). Cadmium results are shown for unfiltered samples in units of milligrams per liter (mg/L).

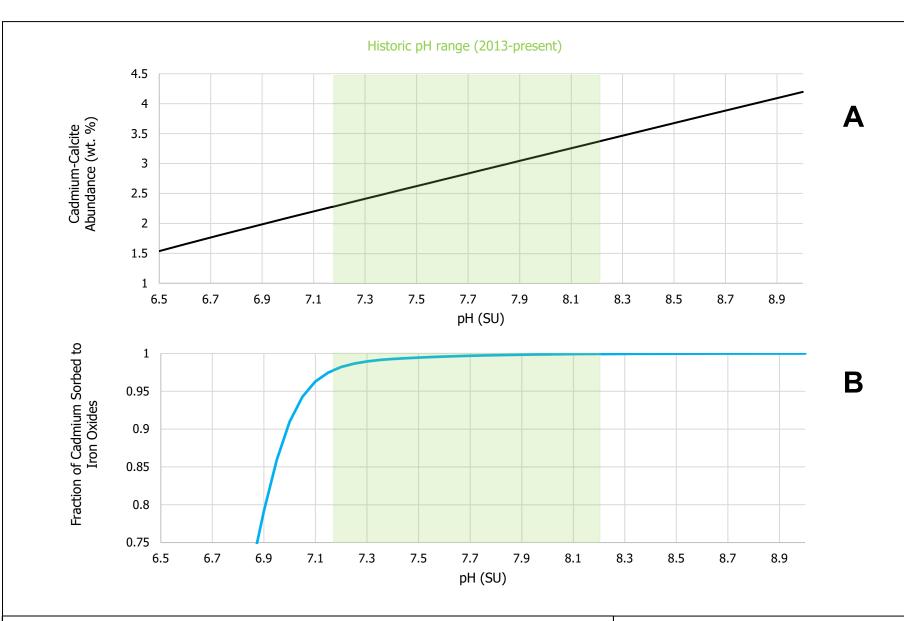
pH and Cadmium Time Series Graph: Monitoring Well 22

Geosyntec consultants

Columbus, OH October 2023

Figure **1**

Notes: pH values are shown in standard units (SU). Predicted concentrations of cadmium and calcium are shown in units of milligrams per liter (mg/L) on a log scale. The historic range of measured pH values at monitoring well 22 groundwater from 2013 to the present is indicated by the green shading. Reported concentrations of calcium and cadmium from the May 31, 2023, groundwater sample collected at monitoring well 22 are indicated by red dots


Geochemical Model Output – Aqueous Cadmium and Calcium Concentrations

Geosyntec consultants

Columbus, OH October 2023

Figure

2

Notes: pH values are shown in standard units (SU). Plot A displays predicted abundances of the cadmium-calcite source phase in units of weight percentage (wt. %). The historic range of measured pH values at monitoring well 22 groundwater from 2013 to the present in indicated by the green shading. Plot B displays the fraction of cadmium in the system that is predicted to sorb to iron oxide minerals.

Geochemical Model Output – Source Phase Abundance and Sorbed Cadmium Fraction

Figure 3

Columbus, OH

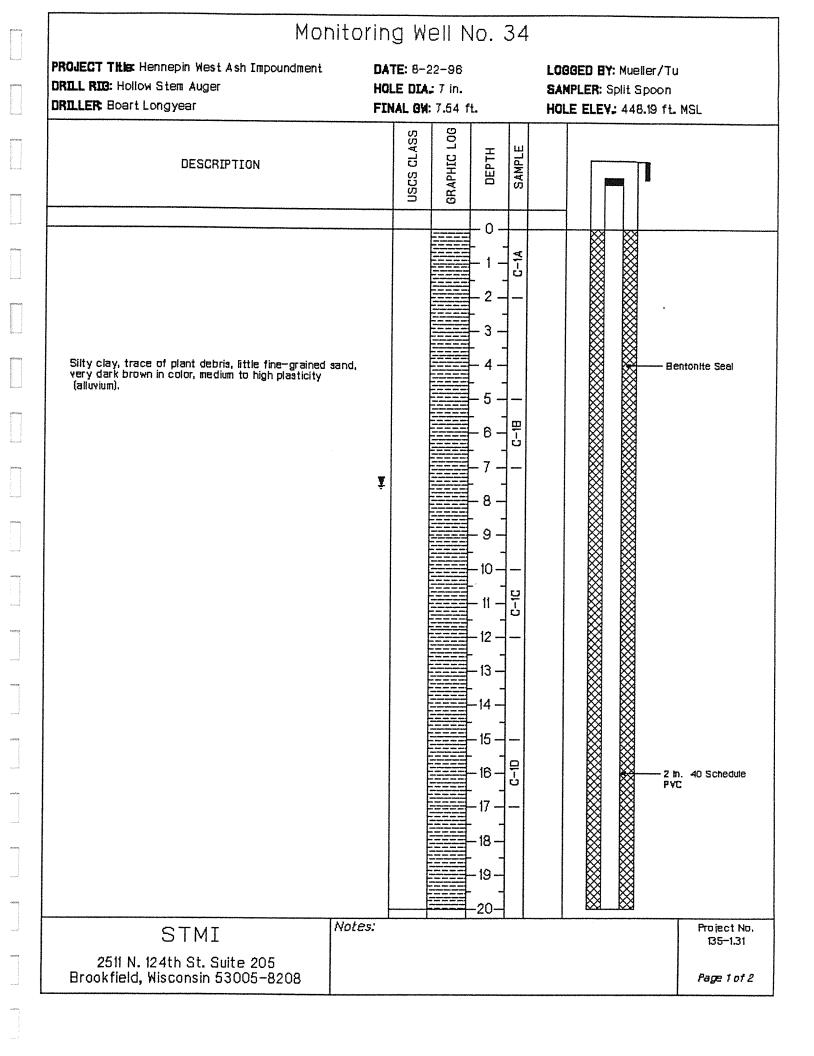
October 2023


ATTACHMENT 1 Boring Logs - Wells 22 and 34

	the last of the la		(
PROJECT.	Hydrogeologic Study	BORING	166
	Hennepin Power Plant	SHEET 1 OF 1	
JOB NO	82-1293		The state of the s

		SAMF	LE	П	DESCRIPTION OF MATERIALS		G)		Shear Sti	ength	, tsf	
2	-		(E	# *		BLOWS	DRY UNIT WEIGHT (pcf)	SV Δ 0 1/2	QP/ ₂	11/2	QU 2	/2 () 21/2
H	EB	PE	G ()	AR	(Color Modifier MATERIAL. Classification)	(per 6 in)	EIG	PL	<u> </u>	MC		
DEPTH (ft)	NUMBER	INTERVAL AND TYPE	ADVANCED / RECOVERED (in)	REMARK	Soil Classification SystemUnified		} -	+		•		x
۵	₹	ANT	8 8	SEE	Surface Elevation 461.4		3	<u> </u>	Rock Qua	50		100
			A RE(S	Surface Elevation		DR	0		50	signanc	100
	1	AS			Brauer Candy CLAV Cl					H	TT	\Box
	'	, A3			Brown Sandy CLAY, CL					╁┼┼	++-	+-1
												丗Ⅱ
-5-	2	SS	18/9		Gray - Brown Silty CLAY Trace	3-5-5			•	++	++	++
					Sand, CL					++	++-	+-1
					D. C. CAND W.C. 14							\Box
-10-	2	SS	10/1/		Brown Fine SAND w/Silt Trace Gravel, SM					++	++	+-1
- 10-		33	18/16		•	5-7-5						
	`	ļ.										$\perp \perp \mid$
	·									+-+	++	+
-15-	,	SS	18/16			10 20 20						
	4	-33	10/10		0 0 0000	19-20-28						l.
					Gray-Brown GRAVEL w/Sand Trace Clay, GP					╂┼┼	++	
					ridec oray, di					11	++	$\dagger \dagger 1$
-20-	5	SS	18/18		·	17-27-38						
										+-+	++-	
					•					11	+ +	†
	,				• •							
-25-	6	SS	18/13		-Coal @ 25.4'	23-18-12				++		+++
-										++	$\dagger \dagger$	$\dagger \dagger \mathbf{I}$
		·										
					Brown Fine SAND, SP			 	_	++	╫╫	┼┤┃
- 30-	7	SS	18/15		D	6-11-11					++	
					Brown GRAVEL w/Sand Trace Clay, GP-GC							口
\vdash							<u> </u>			++	+	┼┤╏
-35-	8	SS	18/6		ТОВ	0-4-6						Ш
				Ц								
					llow Auger '9/82			NDND			ELS	
DATE		ILLEI BY			perts			incounte				Feet Feet
LOGO	ED	BY_		Ma>	keiner	, 6	_Da		er compl		8.0	Feet
PIEZO	OME	TER.	· · · · · · · · · · · · · · · · · · ·	Yes				afte	er compl	etion		Feet

NOTE: Refer to the attached GENERAL NOTES and NOTATION USED ON RECORDS OF SUBSURFACE EXPLORATION for abbreviations, explanations, and qualifications relative to this log.



6" Borehole to Termination Depth

Not to Scale

Monito	ring	J We	ell V	lo.	34	
ROJECT Title: Hennepin West Ash Impoundment RILL RIG: Hollow Stem Auger RILLER: Boart Longyear	HOLE	E DIA.	22–96 ; 7 in. : 7.54 f	L.		LOGGED BY: Mueller/Tu SAMPLER: Split Spoon HOLE ELEY: 448.19 ft. MSL
DESCRIPTION		USCS CLASS	GRAPHIC LOG	ОЕРТН	SAMPLE	WELL CONSTRUCTION DETAIL
Clayey silt, trace to little fine—grained sand and shell fragments, soft, olive—gray. Wet.				-20- - 21- - 22- - 23- - 24- - 25-	- C-E	Bentonite Seal 2 in. 40 Schedule PVC
Sand, fine—grained to medium—grained, well—sorted, quartz, trace of siit, loose, Yellowish brown color grades to olive gray below 31 ft.				-26- -27- -28- -29- -30-	1 C-1F	#7 Fine Sand
				-31- -32- -33- -33-	91-2	0.01 Slotted Well Screen
				-35- -36- -37- -38- -39-		Haleplug
OTAT Not	es:	- Marking and Allerton		-40-		Project No.
STMI 2511 N. 124th St. Suite 205 Brookfield, Wisconsin 53005-8208						135–1.31 Page 2 of 2

ATTACHMENT 2

Sequential Extraction Procedure Laboratory Analytical Reports

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151 Project: Hennepin MNA

06-April-2021

 Date Rec. :
 05 March 2021

 LR Report:
 CA14198-MAR21

 Reference:
 P.O# 80003210A

Copy: #1

CERTIFICATE OF ANALYSIS

Final Report

8:	7:	6:	5:	4:	3:	2:	1;	Analysis
SB-22 29-30'	SB-22 26-27'	SB-51 42-43'	SB-34 32-33'	Analysis Completed Time	Analysis Completed Date	lysis Start Time	AnalysisAnal Start Date	
04-Mar-21 13:00	04-Mar-21 12:40	04-Mar-21 12:30	04-Mar-21 12:15					Sample Date & Time
0.06	< 0.04	0.18	0.09	17:06	22-Mar-21	12:31	22-Mar-21	Sulphide [%]
< 0.1	< 0.1	< 0.1	< 0.1	09:13	25-Mar-21	07:20	23-Mar-21	SO4 [%]
4.55	0.339	3.55	1.92	17:06	22-Mar-21	02:08	22-Mar-21	TOC [%]
74800	15400	70500	64100	09:39	16-Mar-21	19:34	11-Mar-21	TS LOI [mg/L]
0.08	< 0.05	0.06	< 0.05	11:29	06-Apr-21	14:43	05-Apr-21	Ag [µg/g]
3700	2800	8200	5000	11:29	06-Apr-21	14:43	05-Apr-21	Al [μg/g]
8.4	5.1	3.5	2.7	11:29	06-Apr-21	14:43	05-Apr-21	As [µg/g]
31	20	84	47	11:29	06-Apr-21	14:43	05-Apr-21	Ba [μg/g]
0.87	0.20	0.50	0.29	11:29	06-Apr-21	14:43	05-Apr-21	Be [µg/g]
7	6	10	5	11:29	06-Apr-21	14:43	05-Apr-21	3 [µg/g]
0.26	0.13	0.59	0.23	11:29	06-Apr-21	14:43	05-Apr-21	Bi [µg/g]
36000	56000	91000	52000	11:29	06-Apr-21	14:43	05-Apr-21	Ca [µg/g]
2.9	0.76	0.89	0.53	11:29	06-Apr-21	14:43	05-Apr-21	Cd [µg/g]
9.8	5.2	9.3	6.9	11:29	06-Apr-21	14:43	05-Apr-21	Co [µg/g]
130	79	27	45	11:29	06-Apr-21	14:43	05-Apr-21	Cr [µg/g]
25	11	14	8	11:29	06-Apr-21	14:43	05-Apr-21	Cu [µg/g]
12000	9400	14000	10000	11:29	06-Apr-21	14:43	05-Apr-21	Fe [µg/g]
1200	910	1900	1200	11:29	06-Apr-21	14:43	05-Apr-21	< [μg/g]
6	4	12	6	11:29	06-Apr-21	14:43	05-Apr-21	_i [μg/g]
16000	21000	15000	13000	11:29	06-Apr-21	14:43	05-Apr-21	Mg [µg/g]
220	310	350	260	11:29	06-Apr-21	14:43	05-Apr-21	Mn [μg/g]
5.0	3.1	2.0	0.9	11:29	06-Apr-21	14:43	05-Apr-21	Mo [μg/g]
160	190	170	180	11:29	06-Apr-21	14:43	05-Apr-21	Na [μg/g]
43	15	19	12	11:29	06-Apr-21	14:43	05-Apr-21	Ni [μg/g]
28	7.7	11	6.1	11:29	06-Apr-21	14:43	05-Apr-21	Pb [µg/g]
330	350	430	380	11:29	06-Apr-21	14:43	05-Apr-21	⊃ [µg/g]
0.8	< 0.7	1.1	< 0.7	11:29	06-Apr-21	14:43	05-Apr-21	Se [µg/g]
1600	5400	4500	7200	11:29	06-Apr-21	14:43	05-Apr-21	Si [µg/g]
< 0.8	< 0.8	< 0.8	< 0.8	11:29	06-Apr-21	14:43	05-Apr-21	Sb [µg/g]
0.5	< 0.5	0.6	1.1	11:29	06-Apr-21	14:43	05-Apr-21	Sn [µg/g]
0.26	0.13	0.25	0.16	11:29	06-Apr-21	14:43	05-Apr-21	ΓΙ [μg/g]
1.8	1.3	1.2	0.65	11:29	06-Apr-21	14:43	05-Apr-21	J [µg/g]
41	17	18	12	11:29	06-Apr-21	14:43	05-Apr-21	√ [µg/g]

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: Hennepin MNA

LR Report: CA14198-MAR21

Analysis	1: AnalysisAnal Start Date	2: lysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
W [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	0.06	0.05	0.07	0.10
Y [μg/g]	05-Apr-21	14:43	06-Apr-21	11:29	5.7	8.0	6.1	7.6
Zn [μg/g]	05-Apr-21	14:43	06-Apr-21	11:29	40	67	46	91

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

SiREM Laboratory

Attn: Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151

water soluble

Project: Hennepin MNA

30-March-2021

Date Rec. : 05 March 2021 LR Report: CA14201-MAR21 Reference: P.O# 800003210A

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6: CD 54 42 421	7:	8:
	Analysis Start Date	Analysis Start Time	Analysis Completed Date	Analysis Completed Time	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
Sample Date & Time					04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.05	< 0.05	< 0.05	< 0.05
Al [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	120	140	32	310
As [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.8	0.9	0.2	1.5
Be [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.02	< 0.02	< 0.02	0.02
B [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 1	1	< 1	1
Bi [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	500	600	220	410
Cd [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.02	< 0.02	< 0.02	0.04
Co [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.03	0.04	0.02	0.23
Cr [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.5	< 0.5	< 0.5	1.6
Cu [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.1	< 0.1	< 0.1	0.5
Fe [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	72	68	22	310
K [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	110	140	99	220
Li [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 2	< 2	< 2	< 2

Project :

Hennepin MNA

LR Report :

CA14201-MAR21

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

SGS Canada Inc

Phone: 705-652-2000 FAX: 705-652-6365

Analysis	1:		3:	4:	5:	6:	7:	8:
	Analysis Start Date	_	Analysis Completed	Analysis Completed	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
	Start Date	Start Time	Date	Time				
Mg [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	89	120	100	140
Mn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	1.4	1.3	0.5	4.0
Mo [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.1	0.6	0.1	0.3
Na [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	28	35	40	52
Ni [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.5	< 0.5	< 0.5	0.7
P [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	4	4	< 3	10
Pb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.1	< 0.1	< 0.1	0.7
Si [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	300	290	120	740
Sb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.7	< 0.7	< 0.7	< 0.7
Sn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.5	< 0.5	< 0.5	< 0.5
TI [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.02	< 0.02	< 0.02	< 0.02
U [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.016	0.043	0.004	0.069
V [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 3	< 3	< 3	4
W [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.04	< 0.04	< 0.04	< 0.04
Υ [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.045	0.042	0.029	0.15
Zn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.7	< 0.7	< 0.7	2.5

Fraction 1 - Water Soluble

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

SiREM Laboratory

Attn: Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151

Fraction 1 Exchangeable Metals

Project: Hennepin MNA

30-March-2021

Date Rec. : 05 March 2021 LR Report: CA14202-MAR21 Reference: P.O# 800003210A

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Ana Date		Analysis ompleted Date	Analysis Completed Time	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
Sample Date & Time					04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.05	< 0.05	< 0.05	< 0.05
Al [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	3	4	< 1	3
As [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	4.0	4.7	1.5	5.0
Be [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	< 0.02
B [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 1	< 1	< 1	< 1
Bi [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	2200	3200	1000	3500
Cd [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	0.24
Co [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.02	0.03	< 0.01	0.10
Cr [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Cu [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.1	< 0.1	< 0.1	< 0.1
Fe [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	5	6	< 1	2
K [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	57	88	58	92
Li [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 2	< 2	< 2	< 2

Phone: 705-652-2000 FAX: 705-652-6365

Fraction 1 Exchangeable Metals

Project: Hennepin MNA

LR Report : CA14202-MAR21

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Ana		Analysis	Analysis	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
	Date	TimeCo	mpleted Date	Completed Time				
Mn [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	6.5	8.5	1.5	17
Mo [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.1	0.1	< 0.1	< 0.1
Na [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	8	9	11	12
Ni [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Pb [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.1	< 0.1	< 0.1	< 0.1
P [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 3	< 3	< 3	< 3
Sb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	32	30	45	30
Sn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
TI [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	< 0.02
U [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.017	0.061	0.021	0.024
V [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 3	< 3	< 3	< 3
W [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.04	< 0.04	< 0.04	< 0.04
Y [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.006	0.006	0.004	0.008
Zn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.7	< 0.7	< 0.7	< 0.7

Exchangeable Metals

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

SiREM Laboratory

Attn: Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151

Fraction 2 Metals Bound to Carbonates

Project: Hennepin MNA

30-March-2021

Date Rec. : 05 March 2021 LR Report: CA14203-MAR21 Reference: P.O# 800003210A

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Ana Date		Analysis ompleted Date	Analysis Completed Time	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
Sample Date & Time					04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.05	< 0.05	< 0.05	< 0.05
Al [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	5	2	28	6
As [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	20	22	6.0	7.5
Be [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	0.03
B [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 1	< 1	< 1	1
Bi [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	30000	30000	24000	13000
Cd [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.12	0.11	0.37	0.69
Co [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.39	0.39	1.1	1.1
Cr [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	2.6	9.6
Cu [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.1	< 0.1	0.2	< 0.1
Fe [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	8	4	41	32
K [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	41	49	45	67
Li [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 2	< 2	< 2	< 2

Phone: 705-652-2000 FAX: 705-652-6365

Fraction 2 Metals Bound to Carbonates

Project: Hennepin MNA

LR Report : CA14203-MAR21

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Ana Date	•	Analysis empleted Date	Analysis Completed	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
	Date	TimeCC	impleted Date	Time				
Mg [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	2800	4700	2200	7000
Mn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	78	74	140	69
Mo [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.1	< 0.1	< 0.1	< 0.1
Ni [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	2.7	1.9
Pb [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.2	0.2	0.3	0.6
P [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 3	< 3	< 3	< 3
Sb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	90	77	70	110
Sn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
TI [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	< 0.02
U [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.039	0.15	0.089	0.030
V [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 3	< 3	< 3	< 3
W [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.04	< 0.04	< 0.04	< 0.04
Y [μg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.57	0.26	1.0	0.23
Zn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	1.4	1.4	1.6	1.7

Fraction 2 Metals Bound to Carbonates

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

SiREM Laboratory

Attn: Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151

Fraction 3 Metals Bound to Fe and Mn Oxides

Project: Hennepin MNA

30-March-2021

Date Rec. : 05 March 2021 LR Report: CA14204-MAR21 Reference: P.O# 800003210A

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
Sample Date & Time			04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [μg/g]	26-Mar-21	17:51	< 0.05	< 0.05	< 0.05	< 0.05
Al [μg/g]	26-Mar-21	17:51	270	320	270	230
As [μg/g]	26-Mar-21	17:51	0.8	0.9	< 0.5	< 0.5
Ba [μg/g]	26-Mar-21	17:51	8.6	29	3.4	5.9
Be [µg/g]	26-Mar-21	17:51	0.14	0.22	0.07	0.48
B [μg/g]	26-Mar-21	17:51	1	2	2	2
Bi [µg/g]	26-Mar-21	17:51	0.12	0.29	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	17:51	18000	49000	30000	18000
Cd [µg/g]	26-Mar-21	17:51	0.25	0.59	0.16	1.1
Co [µg/g]	26-Mar-21	17:51	1.4	2.2	0.70	2.6
Cr [µg/g]	26-Mar-21	17:51	14	5.3	30	28
Cu [µg/g]	26-Mar-21	17:51	0.1	< 0.1	1.6	0.3
Fe [µg/g]	26-Mar-21	17:51	3100	2500	1600	1100
K [μg/g]	26-Mar-21	17:51	54	73	61	82
Li [μg/g]	26-Mar-21	17:51	< 2	< 2	< 2	< 2

Project: He

Hennepin MNA

LR Report :

CA14204-MAR21

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

SGS Canada Inc

Phone: 705-652-2000 FAX: 705-652-6365

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
Mg [µg/g]	26-Mar-21	17:51	9000	7000	17000	10000
Mn [µg/g]	26-Mar-21	17:51	110	170	90	65
Mo [μg/g]	26-Mar-21	17:51	0.1	0.2	0.5	0.2
Na [µg/g]	26-Mar-21	17:51	850	3700	540	2200
Ni [µg/g]	26-Mar-21	17:51	2.9	3.7	3.1	9.9
Pb [μg/g]	26-Mar-21	17:51	3.1	5.7	3.1	7.7
P [μg/g]	26-Mar-21	17:51	100	71	59	35
Sb [µg/g]	26-Mar-21	17:51	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	17:51	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	26-Mar-21	17:51	480	450	410	410
Sn [µg/g]	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
TI [μg/g]	26-Mar-21	17:51	0.02	0.03	0.03	< 0.02
U [µg/g]	26-Mar-21	17:51	0.095	0.19	0.27	0.31
V [μg/g]	26-Mar-21	17:51	< 3	< 3	< 3	4
W [µg/g]	26-Mar-21	17:51	< 0.04	< 0.04	< 0.04	< 0.04
Υ [μg/g]	26-Mar-21	17:51	1.8	2.6	1.8	1.4
Zn [µg/g]	26-Mar-21	17:51	14	24	7.4	26

Fraction 3 Metals Bound to Fe and Mn Oxides

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

SiREM Laboratory

Attn: Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151

30-March-2021

Date Rec. : 08 March 2021 LR Report: CA14205-MAR21 Reference: P.O# 800003210A

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
Sample Date & Time			04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [μg/g]	26-Mar-21	17:51	< 0.05	< 0.05	< 0.05	< 0.05
Al [μg/g]	26-Mar-21	17:51	77	120	150	630
As [μg/g]	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	26-Mar-21	17:51	1.5	5.5	1.1	2.4
Be [µg/g]	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	0.18
B [μg/g]	26-Mar-21	17:51	< 1	1	< 1	< 1
Bi [µg/g]	26-Mar-21	17:51	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	17:51	1800	3700	600	1300
Cd [µg/g]	26-Mar-21	17:51	0.03	0.03	0.03	0.25
Co [µg/g]	26-Mar-21	17:51	1.0	0.87	0.12	1.1
Cr [µg/g]	26-Mar-21	17:51	3.8	2.5	3.3	20
Cu [µg/g]	26-Mar-21	17:51	2.0	3.4	1.0	11
Fe [µg/g]	26-Mar-21	17:51	170	180	34	1100
K [μg/g]	26-Mar-21	17:51	12	22	24	45
Li [µg/g]	26-Mar-21	17:51	< 2	< 2	< 2	< 2

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA14205-MAR21

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
Mg [μg/g]	26-Mar-21	17:51	1800	3400	240	490
Mn [μg/g]	26-Mar-21	17:51	5.1	7.5	3.5	11
Mo [μg/g]	26-Mar-21	17:51	0.2	0.1	0.3	1.0
Na [µg/g]	26-Mar-21	17:51	10	65	15	36
Ni [μg/g]	26-Mar-21	17:51	1.1	1.8	0.7	15
Pb [µg/g]	26-Mar-21	17:51	0.2	0.2	0.2	1.9
P [µg/g]	26-Mar-21	17:51	70	51	23	24
Sb [µg/g]	26-Mar-21	17:51	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	17:51	< 0.7	0.9	< 0.7	< 0.7
Si [µg/g]	26-Mar-21	17:51	130	160	220	480
Sn [µg/g]	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
TI [μg/g]	26-Mar-21	17:51	0.03	0.04	< 0.02	0.02
U [μg/g]	26-Mar-21	17:51	0.097	0.086	0.12	0.48
V [µg/g]	26-Mar-21	17:51	< 3	< 3	< 3	8
W [µg/g]	26-Mar-21	17:51	< 0.04	< 0.04	< 0.04	< 0.04
Y [μg/g]	26-Mar-21	17:51	0.42	0.31	1.0	3.0
Zn [µg/g]	26-Mar-21	17:51	2.5	2.8	1.7	9.7

Fraction 4 Bound to Organic Material

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

SiREM Laboratory

Attn: Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151 Fraction 5 Residual metals

Project: Hennepin MNA

30-March-2021

 Date Rec. :
 05 March 2021

 LR Report:
 CA14206-MAR21

 Reference:
 P.O# 800003210A

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
Sample Date & Time			04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [μg/g]	26-Mar-21	17:52	0.06	0.09	0.07	0.09
Al [μg/g]	26-Mar-21	17:52	22000	24000	14000	17000
As [μg/g]	26-Mar-21	17:52	1.9	2.7	3.9	6.6
Ba [μg/g]	26-Mar-21	17:52	190	170	130	130
Be [µg/g]	26-Mar-21	17:52	0.46	0.74	0.29	0.47
B [μg/g]	26-Mar-21	17:52	13	26	10	18
Bi [µg/g]	26-Mar-21	17:52	< 0.09	0.21	< 0.09	0.16
Ca [µg/g]	26-Mar-21	17:52	3000	4400	1800	1700
Cd [µg/g]	26-Mar-21	17:52	0.05	0.07	0.10	0.23
Co [µg/g]	26-Mar-21	17:52	3.9	5.4	2.9	3.9
Cr [µg/g]	26-Mar-21	17:52	37	39	54	98
Cu [µg/g]	26-Mar-21	17:52	5.7	9.6	7.4	9.7
Fe [µg/g]	26-Mar-21	17:52	8800	14000	8500	10000
K [μg/g]	26-Mar-21	17:52	9500	10000	6500	7500
Li [μg/g]	26-Mar-21	17:52	11	18	5	13

Phone: 705-652-2000 FAX: 705-652-6365

Fraction 5 Residual metals

Project: Hennepin MNA

LR Report : CA14206-MAR21

8: SB-22 29-30'	7: SB-22 26-27'	6: SB-51 42-43'	5: SB-34 32-33'	4: Analysis Completed Time	3: Analysis Completed Date	Analysis
1100	1100	2300	1900	17:52	26-Mar-21	Mg [µg/g]
54	60	95	68	17:52	26-Mar-21	Mn [μg/g]
3.4	1.8	0.9	0.5	17:52	26-Mar-21	Mo [μg/g]
3900	3600	3200	4100	17:52	26-Mar-21	Na [μg/g]
11	7.4	14	8.2	17:52	26-Mar-21	Ni [µg/g]
17	5.3	6.5	5.2	17:52	26-Mar-21	Pb [μg/g]
200	160	210	130	17:52	26-Mar-21	P [μg/g]
1.0	< 0.8	< 0.8	< 0.8	17:52	26-Mar-21	Sb [µg/g]
< 0.7	< 0.7	< 0.7	< 0.7	17:52	26-Mar-21	Se [µg/g]
31000	34000	25000	8500	17:52	26-Mar-21	Si [µg/g]
4.3	2.9	3.6	2.9	17:52	26-Mar-21	Sn [µg/g]
0.29	0.15	0.34	0.23	17:52	26-Mar-21	TI [μg/g]
1.3	1.0	1.4	0.84	17:52	26-Mar-21	U [μg/g]
78	25	49	28	17:52	26-Mar-21	V [µg/g]
0.23	0.15	0.40	0.24	17:52	26-Mar-21	W [µg/g]
3.1	3.3	4.1	4.1	17:52	26-Mar-21	Υ [μg/g]
62	33	39	24	17:52	26-Mar-21	Zn [µg/g]

Fraction 5 Residual metals

Catharine Arnold, B.Sc., C.Chem Project Specialist,

ATTACHMENT 3 X-Ray Diffraction Laboratory Analytical Report

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for: Environmental Services

Project Number/ LIMS No. Custom XRD/MI4516-MAR21

Sample Receipt: March 12, 2021

Sample Analysis: March 25, 2021

Reporting Date: April 8, 2021

Instrument: BRUKER AXS D8 Advance Diffractometer

Test Conditions: Co radiation, 35 kV, 40 mA

Regular Scanning: Step: 0.02°, Step time: 1s, 2θ range: 3-80°

Interpretations: PDF2/PDF4 powder diffraction databases issued by the International Center

for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.

Detection Limit: 0.5-2%. Strongly dependent on crystallinity.

Contents: 1) Method Summary

2) Quantitative XRD Results

3) XRD Pattern(s)

Kim Gibbs, H.B.Sc., P.Geo.

Senior Mineralogist

Huyun Zhou, Ph.D., P.Geo.

Haym to

Senior Mineralogist

ACCREDITATION: SGS Minerals Services Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada - Minerals Services - Lakefield: http://palcan.scc.ca/SpecsSearch/GLSearchForm.do.

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Minerals Services is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

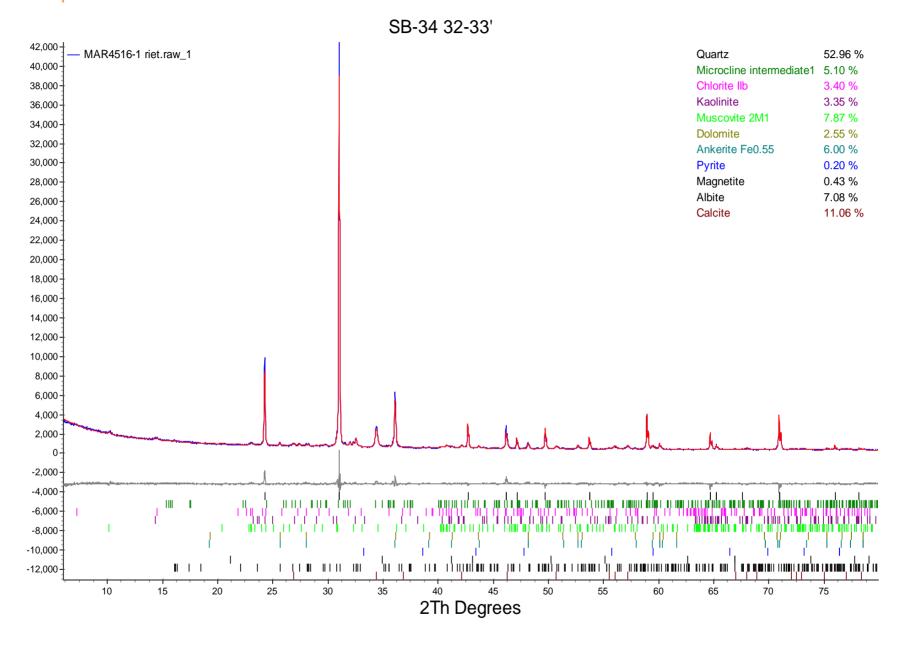
Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

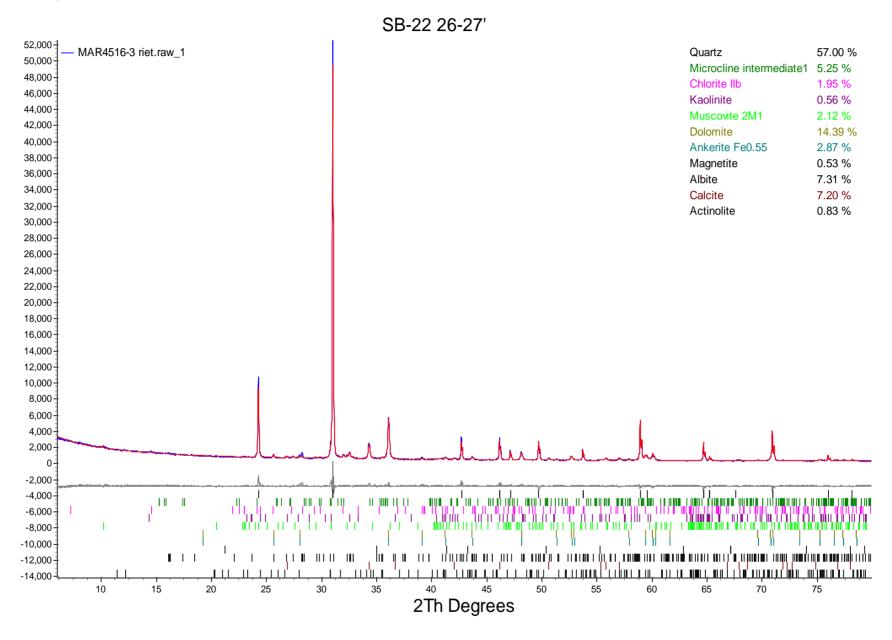
WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
Mineral/Compound	MAR4516-01	MAR4516-02	MAR4516-03	MAR4516-04
	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	53.0	33.1	57.0	54.5
Microcline	5.1	9.8	5.2	5.2
Chlorite	3.4	6.8	1.9	2.7
Kaolinite	3.4	3.4	0.6	2.5
Muscovite	7.9	12.5	2.1	7.4
Calcite	11.1	20.9	7.2	3.3
Dolomite	2.6	5.0	14.4	11.4
Ankerite	6.0	1.3	2.9	2.8
Pyrite	0.2	0.3	-	-
Magnetite	0.4	0.2	0.5	0.4
Albite	7.1	6.6	7.3	9.8
Actinolite	-	-	0.8	-
TOTAL	100	100	100	100


Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.


The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Microcline	KAISi ₃ O ₈
Chlorite	$(Fe,(Mg,Mn)_5,Al)(Si_3Al)O_{10}(OH)_8$
Kaolinite	$Al_2Si_2O_5(OH)_4$
Muscovite	$KAI_2(AISi_3O_{10})(OH)_2$
Calcite	CaCO ₃
Dolomite	CaMg(CO ₃) ₂
Ankerite	CaFe(CO ₃) ₂
Pyrite	FeS ₂
Magnetite	Fe ₃ O ₄
Albite	NaAlSi ₃ O ₈
Actinolite	$Ca_2(Mg,Fe)_5Si_8O_{22}(OH)_2$

